Дисциплина «Экономико-математические методы и модели в отрасли связи». Контрольная работа. Вариант № 3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 3 задачи - 4 штуки
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров . Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров . Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
Дополнительная информация
Работа супер!!!
Похожие материалы
Контрольная работа по дисциплине «Экономико-математические методы и модели в отрасли связи»
АВС
: 7 октября 2012
Вариант 4
ЗАДАЧА 1.
На территории города имеется три телефонные станции А, Б, и В. Незадействованные ёмкости станций составляют на станции А-1200, Б-500, В-1100 номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1-800, 2-700, 3-400, 4-900 номеров (таблица 1.2).
ЗАДАЧА No 2
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n-линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. С
800 руб.
Контрольная работа. Экономико-математические методы и модели в отрасли связи
татьяна89
: 27 марта 2013
ЗАДАЧА No 1
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - 1000, Б - 1500, В - 500 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 400, 2 – 800, 3 - 1200, 4 - 600 номеров.
ЗАДАЧА No 2
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n = 8 линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность
60 руб.
«Экономико-математические методы и модели в отрасли связи»
KOLOTVINA766
: 24 апреля 2017
ЗАДАЧА 1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА=500, Б - QБ=1100, В - QВ=900 номеров. Потребности новых районов постройки города в телефонах составляют: 1 - q1=400, 2 - q2=500, 3 - q3=900, 4 - q4 = 700 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций
250 руб.
Экономико-математические методы и модели в отрасли связи
Галиина
: 8 апреля 2017
Билет №20
1. Особенности имитационного моделирования. Пример моделирования задачи с использованием метода Монте-Карло.
2. Корректировка сетевого графика с учетом ограничения по количеству исполнителей.
3. Задача:
Распределить пять однородных партий товара между тремя рынками так, чтобы получить максимальный доход от продажи. Доход зависит от количества реализуемых партий товара qi(xi)
qi Xj 0 1 2 3 4 5
q1(Xj) 0 30 40 55 60 66
q2(Xj) 0 40 45 50 55 68
q3(Xj) 0 60 64 68 78 90
140 руб.
: Экономико-математические методы и модели в отрасли связи
mahaha
: 8 марта 2017
3. Задача:
На сетевом графике (рис.1) цифры у стрелок показывают в числителе – продолжительность работы дня, в знаменателе – количество ежедневно занятых работников на её выполнение.
В распоряжении организации, выполняющей этот комплекс работ, имеется Р = 18 рабочих, которых необходимо обеспечить непрерывной и равномерной работой. Используя имеющиеся запасы времени по некритическим работам, скорректируйте сеть с учетом ограничения по количеству рабочих.
3/9 2/14
45 руб.
Экономико-математические методы и модели в отрасли связи
mahaha
: 8 марта 2017
ЗАДАЧА 2.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n=7 линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ =3 вызовов в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс=2 единиц времени.
ЗАДАЧА 3.
В таблице приведены затраты времени почтальона (в минута
45 руб.
Экономико-математические методы и модели в отрасли связи
mahaha
: 8 марта 2017
Экономико-математические методы и модели в отрасли связи
Задача 1.
На территории города имеется три телефонные станции А, Б, и В. незадействованные ёмкости станций составляют на станции А-1200, Б-500, В-1100 номеров. Потребности новых районов застройки города в телефонах составляют: 1-800, 2-700, 3-400, 4-200 номеров.
Необходимо составить экономико-математическую модель задачи с помощью модифицированного метода линейного программирования найти вариант распределения ёмкостей телефонных станций
45 руб.
Экономико-математические методы и модели в отрасли связи
mahaha
: 8 марта 2017
Билет №15
1. Характеристика одноканальных систем массового обслуживания с ожиданием. Расчет основных показателей эффективности функционирования таких систем.
2. Решение задач линейного программирования транспортного типа распределительным методом.
3. Задача:
Менеджер по ценным бумагам намерен разместить 10000 капитала таким образом, чтобы получать максимальные годовые проценты с дохода. Его выбор ограничен четырьмя возможными объектами инвестиций: A, B, C, D. Объект A позволяет получать 6% го
45 руб.
Другие работы
Использование и уничтожение товаров и транспортных средств, проходящих таможенное оформление
Elfa254
: 2 августа 2013
В современных условиях экономика России поневоле попадает под зависимость от экономики других стран. Отдельная страна практически не в состоянии производить всю необходимую ей, поглощаемую внутренним рынком продукцию на высоком техническом уровне, требуемого качества. Именно по этому многие российские предприниматели стараются выходить на внешние рынки, что позволяет им расширять производство и получать значительно большую прибыль. Но для успешного ведения внешнеэкономической деятельности необхо
30 руб.
PR-кампания на примере СКБ-банка
GnobYTEL
: 19 июля 2015
В первой главе «Теоретические основы организации и проведения PR-кампании в коммерческой организации» решается задача по изучению сущности понятия PR-кампании, а также изучаются основные технологии PR. Во второй главе рассматривается опыт применения технологий в организации PR-кампании в ОАО СКБ-банк. В третьей главе предлагается планирование и организация PR-кампании на примере ОАО СКБ-банк.
420 руб.
Червячное колесо.
GAGARIN
: 11 июля 2012
Червячное колесо.
Червячное колесо, модуль 12,5 ,
число зубьев 32, степень точности 7-6-6-С,
делительный диаметр 400
Формат А3
Чертеж выполнен с помощью программы КОМПАС 3D
С соблюдением всех требований ГОСТ
Чертеж выполнен очень качественно без ошибок
готово к распечатке!
100 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 1 Вариант 5
Z24
: 7 ноября 2025
Анализ продуктов сгорания показал следующий объёмный состав, %: СО2-12,2; О2-7,1; СО-0,4; N2-80,3. Определить массовый состав входящих в смесь газов, газовую постоянную, удельный объём, плотность смеси при абсолютном давлении р и температуре t. Определить также парциальные давления компонентов смеси.
150 руб.