Теория вероятностей и математическая статистика, вариант 6

Цена:
200 руб.

Состав работы

material.view.file_icon B8504A79-AA4B-4DE9-93A8-7A4F90AC5766.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11
Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более Kрешек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55
Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.
Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036;
i2=-0,809;
i3=0,315;
i4=-0,265;
i5=0,471;
i6=-0,386;
i7=0,576;
i8=-0,556;
i9=0,508;
i10=0,477;
K=3
Часть II: Математическая статистика (практикум)

Задание 1.
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные
вариант: 6
i Xi
1 0,15
2 -3,28
3 5,13
4 0,19
5 -40,44
6 11,06
7 -2,17
8 0
9 0,26
10 -7,68
11 0,33
12 -8,03
13 0,37
14 23,67
15 44,56
16 -1,62
17 42,31
18 2,62
19 21,84
20 -1,7
21 -0,49
22 -0,2
23 0,35
24 -32,11
25 13,72
26 -0,02
27 -1,95
28 -12,02
29 -7,96
30 -2,97
Задание 2.
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.

Числовые данные

вариант: 6
i Уi
1 0,77
2 -16,69
3 26,11
4 0,96
5 -205,9
6 56,3
7 -11,05
8 0
9 1,33
10 -39,1
11 1,68
12 -40,88
13 1,88
14 120,5
15 226,85
16 -8,25
17 215,39
18 13,34
19 111,18
20 -8,65
21 -2,49
22 -1,02
23 1,78
24 -163,5
25 69,84
26 -0,1
27 -9,93
28 -61,19
29 -40,52
30 -15,12
Теория вероятностей и математическая статистика. Вариант №6
Контрольная работа по курсу Теория вероятностей Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля как указано в таблице. Для проверки преподавателю высылаются сразу все задачи, выполненные в редакторе Word. Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля(6) как указано в таблице 1 Задача 1 Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединени
User najdac : 17 ноября 2021
75 руб.
Теория вероятностей и математическая статистика. Вариант №6
Теория вероятности и математическая статистика. Вариант №6
Задание 1. Комбинаторика Сколько 7-ми буквенных слов можно составить из букв слова ШЕРШЕНЬ? Для передачи сообщения используются сигналы типов 0 и 1. Сигналы 0 составляют 60%, а сигналы 1 остальные 40%. Вероятность искажения сигнала 0 равна 0.0001, а вероятность искажения сигнала 1 равна 0.0002. Найти вероятность искажения наугад взятого сигнала.
User Vladimir54 : 22 января 2020
300 руб.
Теория вероятностей и математическая статистика. Вариант №6
Билет № 6 1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение 2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров? 3. Дискретная случайная величина имеет следующий ряд распределения Х 10 20 30 40 50 р a 2a 0,35 0,21 а Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непр
User 5234 : 7 ноября 2016
95 руб.
Контрольнаяработа. Вариант №6. Теория вероятности и математическая статистика
Контрольная работа. вариант 6. Теория вероятности и математическая статистикаТри пассажира садятся в поезд, случайно выбирая любой из 6 вагонов. Какова вероятность, что хотя бы один из них сядет в первый вагон, если известно, что они сели в разные вагоны
User nerverid : 6 апреля 2014
35 руб.
Теория вероятностей и математическая статистика
Задание 1. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно: Задание 2. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
User Dirol340 : 11 декабря 2022
250 руб.
Теория вероятностей и математическая статистика
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования. 2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
User viktoriya199000 : 16 мая 2022
50 руб.
Теория вероятностей и математическая статистика
Лабораторная работа №2 По дисциплине: Планирование и управление информационной безопасностью. Вариант 2
Содержание 1. Цель работы: 3 2. Требуется выполнить: 3 3. Выполнение заданий по теме: исследования параметров парольной защиты 3 4. Выполнение задания по теме: разработка модели системы доступа 12 5. Ответы на контрольные вопросы 15 6. Вывод по проделанной работе 24 Список использованных источников 25 ЛАБОРАТОРНАЯ РАБОТА №2 ТЕМА: «Методы противодействия несанкционированному доступу» 1. Цель работы: Ознакомиться с организации доступа к ресурсам. 2. Требуется выполнить: ЗА
User Учеба "Под ключ" : 25 декабря 2025
700 руб.
promo
Влияние стресса на функции сердечно-сосудистой системы военнослужащих
В наши дни проблема стресса изучена достаточно глубоко. Концепция стресса, сформулированная выдающимся канадским ученым Гансом Селье шестьдесят четыре года назад, оказала большое влияние на различные на-правления науки о человеке – медицину, психологию, социологию и другие области знаний. Предпосылкой возникновения и широкого распространения учения о стрессе можно считать возросшую (особенно в наше время) акту-альность проблемы защиты человека от действий неблагоприятных факторов среды. Стр
User Targelion : 8 ноября 2009
Влаштування монолітної димової труби
1. Галузьзастосування та технологічнівимоги........... 4 1.1. Конструктивні характеристики елементів та їх частин... 4 1.2. Склад основнихробіт..................... 4 1.3. Характеристика умов та особливості виробництва........ 5 1.4. Вказівки щодо прив’язки технологічної карти до конкретної місцевості......................... 5 2. Організація та технологія будівельного процесу......... 7 2.1. Вказівки до підготовки об’єкта................ 7 2.2. Роботи, що повинні бути виконані до початку основ
User cybikrybik : 19 марта 2020
200 руб.
Влаштування монолітної димової труби
Фасовочно-упаковочный автомат марки АРМ-03-1 (чертеж общего вида)
ОПИСАНИЕ ФАСОВОЧНО УПАКОВОЧНОГО АВТОМАТА Назначение и область применения Автомат АРМ предназначен для фасовки и упаковки творога брикетами массой 180 и 200 грамм. Продукт на автомате фасуется в фольгу алюминиевую кашированную с предварительной отпечатанной этикеткой. Автомат устанавливается на молочных заводах и комбинатах. Он может работать независимо от другого оборудования, а также на поточных линиях. Описание конструкции и принципа действия Рисунок 3.1 - Общий вид автомата АРМ
User kurs9 : 9 ноября 2021
490 руб.
Фасовочно-упаковочный автомат марки АРМ-03-1 (чертеж общего вида) promo
up Наверх