Экспериментальное исследование свойств методов Рунге-Кутты
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 ПОСТАНОВКА ЗАДАЧИ
1.1 Приведение к нормальной форме Коши
1.2 Метод Рунге-Кутты второго порядка
2 ОПИСАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ
2.1 Основная программа
2.2 Функция вычисления точного решения
2.3 Процедура вычисления правых частей системы уравнений в нормальной форме Коши
2.4 Процедура RK2
2.5 Процедура RK4
3 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МЕТОДОВ РУНГЕ-КУТТЫ
3.1 Анализ влияния величины шага на точность интегрирования методами Рунге-Кутты второго и четвертого порядка
3.2 Проверка гипотезы Рунге
3.3 Исследование поведение ошибки интегрирования как функции независимой переменной для обоих методов Рунге-Кутты при различных значениях шага
3.4 Сравнительный анализ эффективности методов Рунге-Кутты при различных требованиях к точности вычисления
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЯ
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ В
ВВЕДЕНИЕ
Настоящая курсовая работа посвящена опытному исследованию свойств методов Рунге-Кутты и реализации на персональных компьютерах численных методов приближенного интегрирования ОДУ, наиболее часто применяющихся в практике моделирования и проектирования СА и У. Экспериментальные исследования проводятся с помощью составленных и отлаженных программ интегрирования обыкновенных дифференциальных уравнений на ЭВМ.
Задание предполагает:
a) закрепление теоретических навыков и знаний в вопросе о проблематике интегрирования ОДУ и численного решения задачи Коши методом Рунге-Кутты, изучение их основных свойств (точность, эффективность, устойчивость) и основных характеристик данных свойств (локальная и глобальная алгоритмические ошибки, порядок метода, ошибка вычисления и т.п.) ;
b) приобретение основных навыков составления и отладки процедур и функций интегрирования на основе методов Рунге-Кутты и программ интегрирования систем дифференциальных уравнений с использованием все тех же процедур и функций;
c) проведение опытных исследований зависимости точности, эффективности и устойчивости алгоритмов интегрирования от величины шага интегрирования и порядка метода Рунге-Кутты на ЭВМ.
В различных сферах технических и даже экономических отраслей приходится достаточно часто сталкиваться с математическими задачами, для которых не представляется возможным описать точное решение классическими методами или сие решение выражено крайне неудобочитаемыми соотношениями, которые представляют из себя неприемлемую для мозга пищу, не говоря уже об использовании или реализации на практике.
Разрабатываемые вычислительной математикой численные методы носят в основном ориентировочный характер, однако они позволяют получить итоговый числовой результат со сносной для практических нужд точностью. Численные методы представляют собой алгоритмы вычисления приблизительных значений искомого решения на определенной сетке значений аргумента. При определенных условиях значения аргумента могут являться точными.
Численные методы не позволяют найти общее решение: полученное решение является частным. Но одним из многочисленных плюсов данных методов можно назвать высокую степень применимости к обширным классам уравнений и всем типам вопросов и заданий к ним. Посему с появлением электронных вычислительных машин численные методы стали одними из основных технологий решения определенных практических задач решения ОДУ.
Большую значимость имеет вопрос о верности вычислений на ЭВМ, поскольку при практической реализации имеет место обширный объем обрабатываемой подсчитываемой информации и погрешности могут достаточно сильно исковеркать конечный результат, принимаемый нами за действительный с «поправками на ветер». Кроме сказанного оценка точности численного метода немаловажна и потому, что увеличить точность в некоторых пределах можно за счет увеличения объемов вычислений, а уменьшить временные затраты при решении задачи - за счет снижения точности получаемого результата.
Для понижения погрешности методов интегрирования ОДУ, использующего разложения искомого решения в ряд Тейлора, необходимо принимать во внимание большее количество членов ряда. При всем при этом появляется потребность аппроксимации производных правых частей ОДУ. Ключевая идея методов Рунге-Кутты заключается в том, что производные аппроксимируются через значения функции в точках на интервале , которые выбираются из условия наибольшей близости алгоритма к ряду Тейлора. В зависимости от старшей степени , с коей учитываются члены ряда, построены всевозможные вычислительные схемы Рунге-Кутты разных порядков точности.
Среди достоинств схем Рунге-Кутты не следует обходить во внимании:
ВВЕДЕНИЕ
1 ПОСТАНОВКА ЗАДАЧИ
1.1 Приведение к нормальной форме Коши
1.2 Метод Рунге-Кутты второго порядка
2 ОПИСАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ
2.1 Основная программа
2.2 Функция вычисления точного решения
2.3 Процедура вычисления правых частей системы уравнений в нормальной форме Коши
2.4 Процедура RK2
2.5 Процедура RK4
3 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МЕТОДОВ РУНГЕ-КУТТЫ
3.1 Анализ влияния величины шага на точность интегрирования методами Рунге-Кутты второго и четвертого порядка
3.2 Проверка гипотезы Рунге
3.3 Исследование поведение ошибки интегрирования как функции независимой переменной для обоих методов Рунге-Кутты при различных значениях шага
3.4 Сравнительный анализ эффективности методов Рунге-Кутты при различных требованиях к точности вычисления
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЯ
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ В
ВВЕДЕНИЕ
Настоящая курсовая работа посвящена опытному исследованию свойств методов Рунге-Кутты и реализации на персональных компьютерах численных методов приближенного интегрирования ОДУ, наиболее часто применяющихся в практике моделирования и проектирования СА и У. Экспериментальные исследования проводятся с помощью составленных и отлаженных программ интегрирования обыкновенных дифференциальных уравнений на ЭВМ.
Задание предполагает:
a) закрепление теоретических навыков и знаний в вопросе о проблематике интегрирования ОДУ и численного решения задачи Коши методом Рунге-Кутты, изучение их основных свойств (точность, эффективность, устойчивость) и основных характеристик данных свойств (локальная и глобальная алгоритмические ошибки, порядок метода, ошибка вычисления и т.п.) ;
b) приобретение основных навыков составления и отладки процедур и функций интегрирования на основе методов Рунге-Кутты и программ интегрирования систем дифференциальных уравнений с использованием все тех же процедур и функций;
c) проведение опытных исследований зависимости точности, эффективности и устойчивости алгоритмов интегрирования от величины шага интегрирования и порядка метода Рунге-Кутты на ЭВМ.
В различных сферах технических и даже экономических отраслей приходится достаточно часто сталкиваться с математическими задачами, для которых не представляется возможным описать точное решение классическими методами или сие решение выражено крайне неудобочитаемыми соотношениями, которые представляют из себя неприемлемую для мозга пищу, не говоря уже об использовании или реализации на практике.
Разрабатываемые вычислительной математикой численные методы носят в основном ориентировочный характер, однако они позволяют получить итоговый числовой результат со сносной для практических нужд точностью. Численные методы представляют собой алгоритмы вычисления приблизительных значений искомого решения на определенной сетке значений аргумента. При определенных условиях значения аргумента могут являться точными.
Численные методы не позволяют найти общее решение: полученное решение является частным. Но одним из многочисленных плюсов данных методов можно назвать высокую степень применимости к обширным классам уравнений и всем типам вопросов и заданий к ним. Посему с появлением электронных вычислительных машин численные методы стали одними из основных технологий решения определенных практических задач решения ОДУ.
Большую значимость имеет вопрос о верности вычислений на ЭВМ, поскольку при практической реализации имеет место обширный объем обрабатываемой подсчитываемой информации и погрешности могут достаточно сильно исковеркать конечный результат, принимаемый нами за действительный с «поправками на ветер». Кроме сказанного оценка точности численного метода немаловажна и потому, что увеличить точность в некоторых пределах можно за счет увеличения объемов вычислений, а уменьшить временные затраты при решении задачи - за счет снижения точности получаемого результата.
Для понижения погрешности методов интегрирования ОДУ, использующего разложения искомого решения в ряд Тейлора, необходимо принимать во внимание большее количество членов ряда. При всем при этом появляется потребность аппроксимации производных правых частей ОДУ. Ключевая идея методов Рунге-Кутты заключается в том, что производные аппроксимируются через значения функции в точках на интервале , которые выбираются из условия наибольшей близости алгоритма к ряду Тейлора. В зависимости от старшей степени , с коей учитываются члены ряда, построены всевозможные вычислительные схемы Рунге-Кутты разных порядков точности.
Среди достоинств схем Рунге-Кутты не следует обходить во внимании:
Похожие материалы
Исчисления методами Лагранжа Рунге Кутта Ньютона и Гаусса
Elfa254
: 10 августа 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 2
1.Задача 1
Постановка задачи
Решение 4
2. Задача 2
2.1.Постановка задачи
2.2.Решение 6
3.Задача 3
3.1.Постановка задачи
3.2.Решение 10
4.Задача 4
4.1.Постановка задачи
4.2.Решение 15
СПИСОК ЛИТЕРАТУРЫ 16
ВВЕДЕНИЕ
Основой автоматизации умственного труда человека является широкое внедрение вычислительной техники во все сферы деятельности человека . Применение ЭВМ ускорило процесс математизации науки и техники . Расширяется круг профессий ,для которых математическая грамот
Программа для решения дифференциальных уравнений первого порядка методом Рунге-Кутта
Qiwir
: 9 октября 2013
1. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ
2. ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ (ПО)
2.1 Назначение программного продукта
2.2 Основные задачи
2.3 Входные и выходные данные
3. ПРОЕКТИРОВАНИЕ
3.1 Выделение основных объектов ПО
3.2 Описание полей и методов
3.3 Иерархия классов на основе выделенных объектов
4. ОСНОВНЫЕ ФОРМЫ И КОМПОНЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РЕАЛИЗАЦИИ ПРОГРАММЫ. ОСНОВНЫЕ АЛГОРИТМИЧЕСКИЕ РЕШЕНИЯ РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ
4.1 Метод Рунге-Кутта
4.2 Описание программы ” РЕШЕНИЕ О
10 руб.
Численные методы решения дифференциальных уравнений(метод Эйлера, метод Рунге-Кутта)
xtrail
: 18 февраля 2013
Курсовая работа по информатике, 3 вариант, 1 курс (2 семестр)
Оглавление
I. Содержание задания 3
II. Математическая постановка задачи 3
III. Описание преобразования заданного уравнения 2-го порядка к системе уравнений 1-го порядка 5
IV. Численные методы решения дифференциальных уравнений 5
V. Метод Рунге-Кутта. 6
VI. Блок-схема алгоритма решения системы дифференциальных уравнений 1-го порядка методом Рунге-Кутта 7
VII. Выполнение задачи в программе Pascal 9
VIII. Выполнение задачи в прог
230 руб.
Программа. Процедура решения диф. уровнения методом Рунге-Кутта 4-го порядка
Dresk
: 8 мая 2010
Задание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 0,0001 Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, резу
Другие работы
Контрольная работа по дисциплине: Электромагнитные поля и волны. Вариант №19
Учеба "Под ключ"
: 12 октября 2016
Задача 1
Плоская электромагнитная волна с частотой f распространяется в безграничной реальной среде с диэлектрической проницаемостью Е, магнитной проницаемостью Ма=М0, проводимостью q. Амплитуда напряженности электрического поля в точке с координатой z = 0 Em.
1. Определить к какому типу относится данная среда на заданной частоте.
2. Рассчитать фазовый набег волны на расстоянии, равном глубине проникновения d0.
3. Рассчитать отношение фазовой скорости в реальной среде к фазовой скорости в идеаль
600 руб.
Гидромеханика ТОГУ 2014 Задача Г1
Z24
: 22 октября 2025
По трубопроводу, внезапно расширяющемуся от диаметра d1=100 мм до диаметра d2=250 мм протекает вода с расходом Q=85 м³/ч (рис.16). Определить, какую разность уровней ртути покажет дифференциальный манометр при прямом и обратном направлении воды. Потерями напора не трение по длине пренебречь.
200 руб.
Вал 16К20 020 403 ЧЕРТЕЖ
coolns
: 31 января 2024
Вал 16К20 020 403 ЧЕРТЕЖ
Вал 5 оси механизма шпиндельной бабки станка 16К20.
Чертеж выполнен на формате А1 + PDF (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По всем вопросам пишите в Л/С.
200 руб.
Основы инфокоммуникационных технологий. Зачет. Вариант № 2
mclexx
: 30 ноября 2012
Основы инфокоммуникационных технологий. Зачет. Вариант 02
Уважаемый слушатель, дистанционного обучения, Оценена Ваша работа по предмету: Основы инфокоммуникационных технологий*
Вид работы: Зачет Оценка:Зачет Дата оценки: 29.05.2012
Проверил: Тимченко Светлана Владимировна
Вопрос 1 Как измеряется количество информации?
Вопрос 2 Как восстановить аналоговый сигнал из цифрового?
Вопрос 3 В чем состоит принцип частотной модуляции?
Вопрос 4 Назовите отличия централизованной сигнализации от децентрал
65 руб.