Контрольная работа №2 по дисциплине: Математический анализ
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
Дополнительная информация
05.12.13., сибгути, зачет.
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
xtrail
: 12 апреля 2013
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
650 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
ДО Сибгути
: 14 февраля 2016
Задача No1
Дано:
Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , .
Задача No2
Дано:
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если .
Задача No3
Дано:
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , .
Задача No4
Дано:
Даны векторное поле и плоскость , которая со
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
ДО Сибгути
: 10 февраля 2016
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
70 руб.
Контрольная работа №2 по дисциплине: Дополнительные главы математического анализа
Udacha2013
: 4 сентября 2014
Вариант №4
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
200 руб.
Контрольная работа №2 по дисциплине: Математический анализ вариант 3
vereney
: 9 марта 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной р
50 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
xtrail
: 2 апреля 2013
Вариант № 1
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
300 руб.
Другие работы
Двигатель Wartsila 32. Вид двигателя в разрезе
coolns
: 7 марта 2023
Двигатель Wartsila 32 чертеж
Вид двигателя в разрезе
Двигателей L/V32 (рисунок 1.18)
Диаметр цилиндра 320 мм;
ход поршня 350 мм;
Скорость 720-750 об/мин;
ср. скорость поршня 8,4-8,75 м/с;
степень сжатия Е = 12;
давление сжатия Рс = 100 бар;
макс, давление Рz =140 бар;
давление наддува Рк = 2,4 бар.
мощность цилиндра 450-500 кВт.
Двигатели выпускаются в: рядном (L) — 6-8 и 9 цил. и в V-образном (V) исполнении — 12, 16 и 18 цилиндров.
Чертеж двигатель Вяртсиля 32 выполнен на формате А3 (вс
500 руб.
Инженерная и компьютерная графика Чертежи деталей Вариант 9
Laguz
: 2 марта 2024
Чертежи сделаны в компасе. Наличие чертежей смотртие в приложенных картинках
300 руб.
Лабораторная работа №№ 4-6 Теория электрических цепей (часть 2-я). Вариант №3
lisii
: 23 марта 2019
Л4
1. Цель работы
Исследование зависимости входного сопротивления реактивного двухполюсника от частоты.
2. Подготовка к выполнению работы
При подготовке к работе необходимо изучить теорию реактивных двухполюсников, методы их анализа и синтеза (параграфы 4.5 и 16.6 электронного учебника).
3. Экспериментальная часть
3.1. Соберем схему реактивного двухполюсника (Рис. 1а, 1б).
E = 1 В, f = 1кГц, R0 = 10 кОм, L1 = L2 = 1 мГн, C1 = 63,536 нФ,
С2 = 15,831 нФ, С = 115 нФ.
Л5
1. Цель работы
Экспериме
75 руб.
Контрольная работа №4 по дисциплине: «Теория электрических цепей». Вариант №2
freelancer
: 20 апреля 2016
Задача 4.1
Задача посвящена расчету параметров четырехполюсника (ЧП) и анализу прохождения сигналов через него в согласованном и несогласованном режимах работы.
1. Общая схема (рис.1) и схему ЧП (рис. 2) для 02 варианта.
2. Табличные числовые данные для 02 варианта.
Схема ЧП, приведенная на рис. 2, содержит резистор с сопротивлением R2=2 кОм, R1=2 кОм, конденсатор с емкостью C=20нФ,E=10 В . В общей схеме включения (рис.1) дан источник сигнала с ЭДС, е(t) = Emsin(t + u), частота f = 5 кГц и вну
50 руб.