Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
4x-3y+2z=9
2x+5y-3z=4
5x+6y-2z=18
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
4x-3y+2z=9
2x+5y-3z=4
5x+6y-2z=18
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
Дополнительная информация
Оценка - отлично!
Год сдачи - 2014
Год сдачи - 2014
Похожие материалы
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Roma967
: 21 ноября 2014
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функции.
f(x)=(x^(2)-1)/(x-2)
Задача 2. Найти неопределённые интегралы (см. скрин)
Задача 3. Вычислить площади областей, заключённых между линиями:
у = 4 - x^(2); y = 4х – 1
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
xtrail
: 10 февраля 2014
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
600 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
oksana111
: 21 февраля 2013
Задача 1. Найти пределы функций:
Вариант:3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант:4.2
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант:5.2
Задача 4. Найти неопределенные интегралы:
Вариант:6.2
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант: 7.2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 3, 1-й семестр, 2-й курс
dus121
: 22 декабря 2011
Найти пределы функций LIM 2x2-x-4/x2-3x-2
Найти значение производных в точке х=0
Провести исследоване ф-ции х2-1/х-2
Найти неопределенные интегралы
20 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
sag
: 17 апреля 2014
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
xtrail
: 25 января 2014
Задача 1. Даны функция z=z(x,y), точка A(x ;y ) и вектор a(a ;a ).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arcsin(x^(2)/y); A(1;2), a(5;-12)
Задача 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^4=a^2*(x^2-3y^2)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0; x^2+y^2=z; x^2+y^2=4
Задача
370 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 5 (2-й семестр)
bertone
: 3 января 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный
250 руб.
Другие работы
Справочник работника газовой промышленности
GrantForse
: 19 апреля 2012
СПРАВОЧНИК РАБОТНИКА ГАЗОВОЙ ПРОМЫШЛЕННОСТИ
1. ОПРЕДЕЛЕНИЕ СУТОЧНОЙ ПОТЕРИ ГАЗА ПРИ ИСТЕЧЕНИИ ЕГО ИЗ ОТВЕРСТИЯ В ТЕЛЕ ТРУБЫ.
2. КОМПРЕССОРНЫЕ СТАНЦИИ.
СПРАВОЧНИК РАБОТНИКА ГАЗОВОЙ ПРОМЫШЛЕННОСТИ
1. ПОКАЗАТЕЛИ НАДЕЖНОСТИ, ДИАГНОСТИКА И СНИЖЕНИЕ ЭНЕРГОЗАТРАТ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ
2. АВТОМАТИЗАЦИЯ КС
3. МОНТАЖ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ НА КС
4. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ ГАЗОПЕРЕКАЧИВАЮЩИХ АГРЕГАТОВ С ГАЗОТУРБИННЫМ ПРИВОДОМ
5. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ
6. ТЕХНИКА
50 руб.
Макроэкономика, зачет, билет №15
Fistashka
: 16 октября 2017
Билет № 15
1. Система национального счетоводства.
2. Фискальная политика государства: ее виды и механизм воздействия на экономику.
350 руб.
Проект внутризоновой ВОЛП на участке Новосибирск - Куйбышев
GnobYTEL
: 11 декабря 2011
Содержание
Введение 3
1. Выбор и обоснование трассы прокладки кабеля 5
2. Расчет необходимого числа каналов 8
3. Выбор аппаратуры ВОЛП 12
4. Выбор типа оптического кабеля и описание его конструкции 16
5. Расчет параметров оптического кабеля 18
6. Расчет длины участка регенерации ВОЛП 21
7. Схема размещения регенерационных пунктов по трассе оптического кабеля 25
8. Составление сметы на строительство линейных сооружений 27
9. Расчет параметров надежности ВОЛП 30
10. Определение места поврежден
20 руб.
Термодинамика и теплопередача ТЕПЛОПЕРЕДАЧА ИрГУПС 2015 Задача 6 Вариант 0
Z24
: 4 декабря 2025
Трубопровод тепловой сети с наружным диаметром d1 проложен в канале из сборных железобетонных блоков и имеет толщину изоляционного цилиндрического слоя δ=150 мм. Коэффициент теплопроводности изоляции λ=0,06 Вт/(м·К). Температура наружной поверхности трубопровода (под изоляцией) — t1СТ. Температура воздуха в канале t2=40 ºС. Коэффициент теплоотдачи от поверхности изоляции к воздуху α2=15 Вт/(м²·К).
В результате неплотностей во фланцевых соединениях и сальниках арматуры, а также проникновения в
180 руб.