Дискретная математика. Лабораторные работы №№1-5. Все варианты
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
!СКИДКА! На все свои работы могу предложить скидку до 50%. Для получения скидки напишите мне письмо(выше ссылка "написать")
Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No2
Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No2
Дополнительная информация
Работы были сданы в 2013 году.
Похожие материалы
Дискретная математика Лабораторная работа № 1 (все варианты)
still65
: 16 января 2016
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AB, AB, AB, A\B (дополнительно: B\A, AB, BA).
3. Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновремен
100 руб.
Дискретная математика. Лабораторная работа №1. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств выбирается
30 руб.
Дискретная математика. Лабораторная работа № 1
svladislav987
: 16 апреля 2021
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Дискретная математика. Лабораторная работа №1
Bodibilder
: 14 марта 2019
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множес
15 руб.
Дискретная математика. Лабораторная работа №1
sibguter
: 5 июня 2018
Тема: Множества и операции над ними
Задание
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается т
49 руб.
Лабораторная работа № 1. Дискретная математика
Antipenko2016
: 8 января 2017
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств
150 руб.
Лабораторная работа №1 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 1.Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается тре
200 руб.
Дискретная математика. Лабораторная работа №1
PShulepov
: 13 октября 2013
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
100 руб.
Другие работы
Сравнительная характеристика институтов таможенного оформления и таможенного контроля товаров
Elfa254
: 2 августа 2013
Введение
Актуальность темы. Одной из основных особенностей современного этапа развития мировой экономики является ее глобализация и, как следствие, - возрастание роли внешнеэкономических связей в экономическом развитии всех стран мира. В России потребности создания механизма регулирования внешнеэкономической и, прежде всего, внешнеторговой деятельности, упрощение порядка выхода предприятий и организаций на внешний рынок, ставят задачи создания единого правового поля, которое обеспечивало бы инте
10 руб.
Высшая математика. Математика. Экзамен. 2-й семестр. 16-й билет
uberdeal789
: 1 мая 2014
1.Применение степенных рядов к приближенным вычислениям.
2.Найти градиент функции z=f(x,y) в точке M (1,1)
3.Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4.Определить, сходится ли данный ряд ...
5.Разложить функцию y=x-1 в ряд Фурье в интервале
6.Найти частное решение дифференциального уравнения
при данном начальном условии
7.Найти частное решение дифференциального уравнения
50 руб.
Башенный кран 30тон
DocentMark
: 22 октября 2024
Белорусский государственный университет транспорта
Кафедра транспортно-технологические машины и оборудование
курсовой проект по дисциплине "Подъемно транспортные машины"
На тему "Башенный кран"
Гомель 2020
Техническая характеристика
Максимальная грузоподъёмность, т 30
Максимальная высота подъёма, м 25
Максимальный вылет стрелы, м 35
Скорость, м/мин
подъёма груза максимальной массы 11,4
передвижения крановой тележки 18,6
передвижения крана 50
Частота вращения поворотной части, об/мин 2
Колея, м
205 руб.
ИГ.05.21.02 - Корпус. Разрезы простые
Чертежи СибГАУ им. Решетнева
: 26 октября 2021
Все выполнено в программе КОМПАС 3D v16
Вариант 21
ИГ.05.21.02 - Корпус. Разрезы простые
1. По двум видам построить вид слева, фронтальный и профильный разрезы.
2. Нанести размеры.
3. Построить прямоугольную изометрическую проекцию с четвертью выреза.
В состав работы входят 4 файла:
- 3D модель данной детали, расширение файла *.m3d;
- ассоциативный чертеж формата А3 в трёх видах с выполненными фронтальным и профильным разрезами с совмещением половины вида и половины разреза и проставленными р
100 руб.