Теория вероятностей и математическая статистика. Экзамен. Билет №3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №3.
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, прокомментируйте смысл и содержание выбранного метода
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, прокомментируйте смысл и содержание выбранного метода
Дополнительная информация
Оценка:Хорошо
Дата оценки: 19.03.2014
Дата оценки: 19.03.2014
Похожие материалы
Теория вероятностей и математическая статистика, Экзамен, Билет №3
artinjeti
: 9 апреля 2018
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
150 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Nadyuha
: 29 ноября 2017
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интеграль
200 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 3
radist24
: 15 декабря 2011
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения .
Найти
5. Каков
70 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3
freelancer
: 10 апреля 2016
Задание 1.
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
Задание 2.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
Задание 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
Задание 4.
Непреры
100 руб.
Экзамен по дисциплине «Теория вероятности и математическая статистика». Билет № 3
sanco25
: 6 февраля 2012
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек., равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения.
Найти с, M(X).
5.
90 руб.
Теория вероятностей и математическая статистика. Экзамен
Ane4ka666
: 31 октября 2015
1. Дисперсия случайной величины и её свойства.
2. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
100 руб.
Экзамен. Теория вероятности и математическая статистика
елена85
: 4 декабря 2014
Билет 7
1. Повторение независимых испытаний. Формула Бернулли.
2. В урне 15 шаров: 9 красных и 6 синих. Найти вероятность того, что два наугад вынутых шара будут одного цвета.
150 руб.
Теория вероятностей и математическая статистика. 2-й семестр. Экзамен. Билет №3
Ирина16
: 10 февраля 2017
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотност
200 руб.
Другие работы
Расчетно-графический анализ тягово-скоростных свойств автомобиля УАЗ-452, движущегося по дороге с коэффициентом суммарного дорожного сопротивления 0,018.
yura909090
: 24 мая 2012
В курсовой работе я анализирую тягово-скоростные свойства, которые определяют возможный диапазон скоростей движения, интенсивность и путь разгона в тяговом режиме, предельные дорожные условия, при которых автомобиль способен двигаться с заданными конструктивными параметрами. Чем лучше тягово-скоростные свойства, тем меньшие затраты времени на перевозку. Что положительно сказывается на его продуктивности.
В данной работе я буду производить расчетно-графический анализ для автомобиля УАЗ-452, дви
80 руб.
Что такое РНР
alfFRED
: 10 ноября 2012
В первой статье я кратко расскажу, что же представляет из себя РНР как язык и укажу на основные преимущества и недостатки его перед другими языками программирования. Идея РНР родилась в голове некого Расмуса Ледорфома(Rasmus Lerdorf). Как предполагается, где-то в конце 1994 года. Не так давно между прочим, и именно по этой причине - по причине молодости РНР, так мало есть ресурсов на его тему. Кстати, полная расшифровка РНР звучит так - Personal Home Page Tools. На великом и могучем это звучит п
10 руб.
Бруй Л.П. Техническая термодинамика ТОГУ Задача 1 Вариант 03
Z24
: 2 декабря 2025
Расчет газовой смеси
Газовая смесь состоит из нескольких компонентов, содержание которых в смеси задано в процентах по объему (табл.1.1).
Определить:
1) кажущуюся молекулярную массу смеси;
2) газовую постоянную смеси;
3) средние мольную, объемную и массовую теплоемкости смеси при постоянном давлении в пределах температур от t1 до t2 (табл.1.2).
1. Что называется удельной газовой постоянной? Единица ее измерения в системе СИ. Чем она отличается от универсальной газовой постоянно
150 руб.
Совершенствование техники и технологии проведения КРС с применением гибких труб-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегаз
lenya.nakonechnyy.92@mail.ru
: 9 ноября 2017
Совершенствование техники и технологии проведения КРС с применением гибких труб-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Бурное развитие техники и технологии с использованием колонны гибких труб обусловлено следующими их преимуществами:
• при исследовании скважин:
– обеспечение возможности доставки приборов в любую т
1626 руб.