Экономико-математические методы. Контрольная работа. Вариант №2
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Работа состоит из 4-ёх задач.
Задача 1.
Условие.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров. Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
Исходные данные:
А = 1000, Б = 1500, В = 500;
1 – 400, 2 – 800, 3 – 1200, 4 – 600;
Среднее расстояние от станции до районов застройки, км.
Задача2
Условие.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ вызовов в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс единиц времени.
Исходные данные:
Количество линий n = 8;
Плотность потока λ = 4;
Среднее время разговора tобс = 1.
Задача3
Условие.
В таблице 3.1 приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
Задача 4.
Условие.
На сетевом графике (рис. 4.1) цифры у стрелок показывают в числителе - продолжительность работы в днях, в знаменателе - количество ежедневно занятых работников на её выполнение.
В распоряжении организации, выполняющей этот комплекс работ. Имеется 28 рабочих, которых необходимо обеспечить непрерывной и равномерной работой.
Используя имеющиеся запасы времени по некритическим работам, скорректируйте сетевой график с учётом ограничения по количеству рабочих .
Задача 1.
Условие.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров. Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
Исходные данные:
А = 1000, Б = 1500, В = 500;
1 – 400, 2 – 800, 3 – 1200, 4 – 600;
Среднее расстояние от станции до районов застройки, км.
Задача2
Условие.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ вызовов в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс единиц времени.
Исходные данные:
Количество линий n = 8;
Плотность потока λ = 4;
Среднее время разговора tобс = 1.
Задача3
Условие.
В таблице 3.1 приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
Задача 4.
Условие.
На сетевом графике (рис. 4.1) цифры у стрелок показывают в числителе - продолжительность работы в днях, в знаменателе - количество ежедневно занятых работников на её выполнение.
В распоряжении организации, выполняющей этот комплекс работ. Имеется 28 рабочих, которых необходимо обеспечить непрерывной и равномерной работой.
Используя имеющиеся запасы времени по некритическим работам, скорректируйте сетевой график с учётом ограничения по количеству рабочих .
Дополнительная информация
Учебное заведение: Сибирский государственный университет телекоммуникаций и информатики.
Преподаватель: Батый Ада Рамазановна.
Год сдачи: сентябрь 2013.
Рецензия: Работа зачтена. ЭММ в задаче 1 составлена правильно. Корректировка сетевого графика в задаче 4 выполнена неверно , нарушена заданная последовательность работ . У Вас после корректировки работа 1-2 заканчивается на 8 день. а работа 2-5 начинается с 6 дня, работа 3-5 заканчивается на 15 день, а работа 5-7 начинается раньше - это недопустимо.
Оценка: Зачёт.
Преподаватель: Батый Ада Рамазановна.
Год сдачи: сентябрь 2013.
Рецензия: Работа зачтена. ЭММ в задаче 1 составлена правильно. Корректировка сетевого графика в задаче 4 выполнена неверно , нарушена заданная последовательность работ . У Вас после корректировки работа 1-2 заканчивается на 8 день. а работа 2-5 начинается с 6 дня, работа 3-5 заканчивается на 15 день, а работа 5-7 начинается раньше - это недопустимо.
Оценка: Зачёт.
Похожие материалы
Экономико-математические методы. Контрольная работа. Вариант №2
Maria2
: 4 марта 2017
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров (таблица 1.2)
Таблица 1.1
Станций
Qa 1000
Qб 1500
Qв 500
Таблица 1.2
q1=400, q2=800; q3=1200; q4=600.
Таблица 1.3.
Станции Районы
А 5
Б 2
В 7
Необходимо составить экономико-математическую модель задачи и с помощью распределит
300 руб.
Экономико-математические методы. Контрольная работа. Вариант №2
nastia9809
: 15 марта 2016
Задача №1
На территории города имеется три телефонных станции. А, Б и В. Незадействованные емкости станций составляют на станции А - 1000, Б - 1500, В - 500 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 400, 2 – 800, 3 - 1200, 4 - 600 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами ново
80 руб.
Экономико-математические методы. Контрольная работа. Вариант №2
igoreniaomsk
: 13 января 2014
ЗАДАЧА 1
На территории города имеется три телефонные станции А, Б, и В. незадействованные ёмкости станций составляют на станции А-Qа, Б-Qб, В-Qв номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1-Q1, 2-Q2, 3-Q3, 4-Q4 номеров таблицы (таблица 1.2).
Необходимо составить экономико-математическую модель задачи с помощью модифицированного метода линейного программирования найти вариант распределения ёмкостей телефонных станций между районами новой застройки, к
250 руб.
Экономико-математические методы. Вариант №2
alex9130
: 15 апреля 2014
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - 1000, Б - 1500, В - 500 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 400, 2 – 800, 3 - 1200, 4 - 600 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки
200 руб.
Экономико-математические методы. Вариант №2
dgrmaa
: 18 марта 2014
1. ЗАДАЧА No 1
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - 1000, Б - 1500, В - 500 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 400, 2 – 800, 3 - 1200, 4 - 600 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами
200 руб.
Контрольная работа. Экономико математические методы
barhatovain
: 26 января 2016
Задача No1
Дано:
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют:
на станции А - QА= 1200 номеров,
на станции Б - QБ=500 номеров,
на станции В - QВ=1100 номеров.
Потребности новых районов застройки города в телефонах составляют:
q1=800, q2=700, q3=400, q4=900 номеров.
Определить:
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти в
200 руб.
Экономико математические методы. Контрольная работа
ДО Сибгути
: 12 февраля 2014
Задача 2
Необходимо оценить работу АТС, которая имеет n линий связи.
Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга.
Средняя плотность потока равна λ вызовов в единицу времени.
Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения.
Среднее время одного разговора равно tабс единиц времени.
Задача 4
На столовом графике цифры у стрелок показывают в числителе – продолжительность работы в днях, в зн
50 руб.
Контрольная работа «Экономико-математические методы и модели.»
Antipenko2016
: 6 февраля 2018
1)Дано:
Функция производственных затрат вида: x = 0,6y+10.
Определить:
• К какому типу функций производственных затрат она относится
2)Дано:
Функция полезности потребителя имеет вид: u (x, y) = xy
Цены товаров: Px = 4 д.е., Py= 2 д.е.. Доход потребителя составляет: I = 36 д.е.
Запишите задачу потребителя и определите уровень полезности, достигаемый потребителем в точке оптимума.
3)Рассмотрим взаимодействие налогового инспектора и налогоплательщика.
У налоговой инспекции есть два способа действ
250 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.