Контрольная работа по дисциплине: Дискретная математика. Вариант №2 (2-й семестр)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \ (AC) = (AB) \C б) (AB)C=(AC)(BC) .
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x•y > 1}.
No4 Доказать утверждение методом математической индукции:
(n^(3) + 11•n) кратно 6 для всех целых n >= 0.
No5 Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x^(3)•y^(2)•z^(2), b=x^(2)•y^(2)•z^(2), c=x^(4)•z^(4) в разложении (2•x+3•y+5•z^(2)^(6).
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
No9
Орграф задан матрицей смежности. Необходимо: (см. скрин)
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти Эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. (см. скрин) Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x•y > 1}.
No4 Доказать утверждение методом математической индукции:
(n^(3) + 11•n) кратно 6 для всех целых n >= 0.
No5 Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x^(3)•y^(2)•z^(2), b=x^(2)•y^(2)•z^(2), c=x^(4)•z^(4) в разложении (2•x+3•y+5•z^(2)^(6).
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
No9
Орграф задан матрицей смежности. Необходимо: (см. скрин)
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти Эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. (см. скрин) Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Оценка - отлично!
Сдал со второго раза. В работе присутствует работа над ошибками.
Преподаватель: Бах О. А.
Сдал со второго раза. В работе присутствует работа над ошибками.
Преподаватель: Бах О. А.
Похожие материалы
Контрольная работа по дисциплине: Дискретная математика. Вариант №3 (2-й семестр)
xtrail
: 9 февраля 2014
Вариант 3
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (A\C) = A \ (BC) б) A(B\C)=(AB)\(AC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
850 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №7 (2-й семестр)
xtrail
: 24 января 2014
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а) (A\C) (B\C) = (AB)\C
б) (A\B)C=(AC)\(BC)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение
850 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2
IT-STUDHELP
: 7 ноября 2023
Вариант No2
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а)
б)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения . Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисим
600 руб.
Контрольная работа по дисциплине «Дискретная математика». Вариант №2
Viktopu9i
: 24 апреля 2021
1. Выполнение операций над множествами
2. Выполнение операций алгебры логики
3. Решение задач теории графов.
4. Комбинаторика. Применение графовых моделей
Список литературы
1. Выполнение операций над множествами. Задание 1. Построить выражения над множествами A (круг), B (квадрат) и C (треугольник), которым соответствуют заштрихованные области на заданных диаграммах Эйлера-Венна.
Задание 2. Упростить выражение
2. Выполнение операций алгебры логики. Задание 1. Представить в СКНФ функцию
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2.
vbonina
: 17 апреля 2021
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
,
; ; ; .
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности
225 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант № 2
mdmatrix
: 10 апреля 2020
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
,
; ; ; .
а) ; б) ; в) ; г) ; д) .
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности
30 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2
Учеба "Под ключ"
: 8 июля 2017
1. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ пост
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2
Sunshine
: 27 октября 2016
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
II. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найт
100 руб.
Другие работы
Анализ эффективности внедрения технологии SDN на действующую сеть связи
holm4enko87
: 2 августа 2017
Анализ эффективности внедрения технологии SDN на действующую сеть связи
Магистерская диссертация по направлению 11.04.02 «Инфокоммуникационные технологии и системы связи»
В этой работе исследуется перспектива частичного развертывания программно-реализованной сети (SDN) и представляем, архитектуру и методологию планирования и эксплуатации сетей, объединяющих как классические коммутаторы, так и обновленные до SDN. Данная архитектура предоставляет абстракцию логического SDN в частично обновленной к
2500 руб.
Теоретическая механика СамГУПС Самара 2020 Задача С2 Рисунок 6 Вариант 2
Z24
: 7 ноября 2025
Определение реакций опор твёрдого тела (пространственная система сил)
Определить значение силы Р и реакции опор твёрдого тела, изображённого на рис. С2.0 – С2.9. Исходные данные для расчёта представлены в таблице С2.
150 руб.
Спутниковые и радиорелейные системы передачи
LenaSibsutis
: 4 февраля 2022
Вариант 14
Задание на контрольную работу:
1. Определить число пролетов
2. Построить профиль пролетов
3. Привести краткую характеристику используемой аппаратуры
4. Рассчитать качественные показатели ЦРРЛ:
300 руб.
Программа организации семейного туризма в районе Горной Колывани
Lokard
: 22 февраля 2014
Оглавление
Введение
Глава 1. Анализ туристско-рекреационного потенциала района Горной Колывани
1.1. Природно-ландшафтный потенциал Горной Колывани
1.1.1. Географическое положение Горной Колывани
1.1.2. Геологическое строение и рельеф Горной Колывани
1.1.3. Климат Горной Колывани
1.1.4. Реки и озера Горной Колывани
1.1.5. Растительный и животный мир
1.2. Историко-культурный потенциал Горной Колывани
1.3. Инфраструктурный потенциал Горной Колывани
1.4. Конъюнктура туристского рынка Горной Колыва
19 руб.