Контрольная работа №2 по математическому анализу
Состав работы
|
|
|
|
Описание
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Коментарии: Контрольная работа 1 13.05.2013 15.05.2013 Зачет
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Коментарии: Контрольная работа 1 13.05.2013 15.05.2013 Зачет
Похожие материалы
Контрольная работа №2 по Математическому анализу.
Udacha2013
: 26 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с
230 руб.
Контрольная работа №2 по математическому анализу
aragorn24
: 10 февраля 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
50 руб.
Контрольная работа №2 по математическому анализу. Вариант №5
romaneniii
: 2 апреля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
100 руб.
Контрольная работа №2 по математическому анализу. 10-й вариант
Despite
: 21 января 2013
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a z=3x^2y^2+5y^2x A(1;1) a(2;1)
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).y^6=a^2(3y^2-x^2)(y^2+x^2)
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.z=0
z=4 y, x+y=4
Задача No 4:
150 руб.
Контрольная работа №2 (Математический анализ) В-6
banderas0876
: 6 мая 2015
Вариант 3.6
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2. Специальные главы математического анализа
worknecro
: 9 сентября 2015
Задача 1.
Вычертить область плоскости по данным условиям:
Задача 2.
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
Задача 3.
При помощи вычетов вычислить данный интеграл по контуру.
150 руб.
Контрольная работа №2. Математический анализ. Вариант №01
DarkInq
: 19 февраля 2014
1. Вычертить область плоскости по данным условиям
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них
3. При помощи вычетов вычислить данный интеграл по контуру.
40 руб.
Другие работы
Представление и использование знаний об объектах
OstVER
: 10 ноября 2012
Содержание
Задание.............................................................................................................3
Введение...........................................................................................................4
Формулировка цели КПР..............................................................................4
1. Теоретический раздел.................................................................................5
2. Практический раздел.........................
5 руб.
Практика действий режимов в интерпретации представителей интеллектуальной элиты Ближнего Востока
Qiwir
: 12 января 2014
Практика действий режимов в интерпретации представителей интеллектуальной элиты Ближнего Востока
демократизация арабский восток
Говоря о сегодняшней ситуации в сфере демократизации в странах Северной Африки М.А. Аль-Хармаси, в частности, подчеркивал: «Ни одно из правительств Магриба от Рабата до Триполи не смогло добиться решения постоянно бросавших им вызовы задач: большей экономической эффективности, с одной стороны, и политического обновления, c другой.
Ситуация стала еще более сложной, когда
5 руб.
Информатика. Зачёт
Gila
: 15 октября 2017
1. Сервис WWW: назначение и функции.
2.Что такое база данных и СУБД. Назначение, функции.
160 руб.
Задача по ТОЭ
anderwerty
: 6 мая 2014
Если линия электропередачи имеет небольшую длину, при которой можно пренебречь утечкой тока через изоляцию, то ее электрическую схему можно представить в виде последовательного соединения сопротивления линии RЛ, равного суммарному сопротивлению прямого и обратного проводов, и сопротивления нагрузки RН (рис. 1).
10 руб.