Контрольная работа по дисциплине : Математический анализ Вариант №6

Цена:
43 руб.

Состав работы

material.view.file_icon D41BC82C-DD0A-4B2D-AA6A-3CAA4F8E0413.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.

Дополнительная информация

зачет, 2015
Контрольная работа по дисциплине Математический анализ. Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. 3. Исследовать методами дифференциального исчисления функцию
User wertystn : 28 января 2019
70 руб.
Контрольная работа по дисциплине Математический анализ. Вариант №6
Контрольная работа по дисциплине «Математический анализ» Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5. Найти неопределенные интегралы
User Nadyuha : 15 декабря 2016
200 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Контрольная работа по дисциплине: Математический анализ. Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User Aleksandr1234 : 19 октября 2014
50 руб.
Контрольная работа по дисциплине: «Математический анализ». Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=arctg(xy^2); A(2;3), a(4;-3) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^6=a^2(x^4-y^4) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, 4z=y^2, 2x-y=0, x+y=9 4. Даны векторное поле F=Xi+Yj+Zk и
User xtrail : 14 января 2014
400 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User Fatony : 29 сентября 2012
45 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант 6
кр№1 2семестр вариант 6 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле и плоскость (P): , которая совместно с координатным
User barjel : 14 апреля 2012
60 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
СибГУТИ математический анализ контрольная работа №1 вариант 6 1курс 1семестр Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: Рецензия:Уважаемый ХХХХХХХХХХХХХХ, существенных
User barjel : 29 ноября 2011
45 руб.
Контрольная работа по дисциплине: Дополнительные главы математического анализа. Вариант №6
Контрольная работа По дисциплине: Дополнительные главы математического анализа.Вариант 6 1 Найти область сходимости степенного ряда 2 Разложить функцию в ряд Фурье на данном отрезке (период Т) 3 Начертить область на комплексной плоскости по данным условиям 4 Вычислить интеграл по дуге от точки до точки 5 Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
User oly : 1 марта 2018
50 руб.
Тепловой расчет дизельного двигателя
Рабочее тело и его свойства Процесс впуска Процесс сжатия Процесс сгорания Процесс расширения Процесс выпуска Индикаторные показатели рабочего цикла Эффективные показатели двигателя Основные параметры и показатели двигателя Тепловой баланс двигателя Построение индикаторной диаграммы
User isaevx : 17 апреля 2013
Гидравлика Задача 12.49 Вариант 6
Бензин (ρ=700 кг/м³) подается по стальному трубопроводу (L, м, d, м, δ,м) с расходом Q, м³/c. Необходимо определить максимальное ударное повышение давления и время закрытия концевой задвижки, при котором гидравлический удар становится непрямым.
User Z24 : 16 января 2026
150 руб.
Гидравлика Задача 12.49 Вариант 6
РГР №2. Сечение многогранника плоскостью по методичке Липовки. Вариант №17.
Всё выполнено в программе Компас 3D v16. Вариант 17. РГР №2. Сечение многогранника плоскостью и натуральная величина сечения. Это комплексная РГР, состоящая из двух работ. Задача 1. По данным координатам вершин построить многогранник и задать плоскость общего положения. Определить фигуру сечения многогранника этой плоскостью. Задача 2. Определить натуральный вид сечения, применяя для этого способ замены плоскостей проекций. На образце видно что первая работа делается на горизонтальном форма
User Чертежи : 31 октября 2021
120 руб.
РГР №2. Сечение многогранника плоскостью по методичке Липовки. Вариант №17.
Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств
Общая постановка задачи Транспортное средство или колонна транспортных средств следует из пункта А в пункт Б. Существует несколько возможных маршрутов движения колонны, каждый из которых характеризуется n линейными участкам, протяженностью L и скоростью движения по ним V. Требуется обосновать выбор оптимального маршрута по критерию минимума времени на его прохождение.
User evelin : 15 сентября 2013
5 руб.
up Наверх