Контрольная работа. Вариант №10. Дискретная математика. СибГУТИ
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1. Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (AC) = A\(B\C)б) (AB)(CD)=(AC)(BC)(AD)(BD).
Задача 2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,1),(4,4)}.
Задача 3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x2 y}.
Задача 4. Доказать утверждение методом математической индукции:
1•2 + 2•5 + 3•8 + ... + n•(3•n–1) = n2•(n+1).
Задача 5. Десять студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое в каждой. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
Задача 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 20 или 25? б) делящихся ровно на одно из этих трех чисел?
Задача 7. Найти коэффициенты при a=x3•y2•z3, b=x2•y2•z2, c=x6•z4 в разложении (5•x3+3•y+2•z)6.
Задача 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 + 7•an+1 + 5•an = 0• и начальным условиям a1=6, a2=9.
Задача 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Задача 2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,1),(4,4)}.
Задача 3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x2 y}.
Задача 4. Доказать утверждение методом математической индукции:
1•2 + 2•5 + 3•8 + ... + n•(3•n–1) = n2•(n+1).
Задача 5. Десять студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое в каждой. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
Задача 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 20 или 25? б) делящихся ровно на одно из этих трех чисел?
Задача 7. Найти коэффициенты при a=x3•y2•z3, b=x2•y2•z2, c=x6•z4 в разложении (5•x3+3•y+2•z)6.
Задача 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 + 7•an+1 + 5•an = 0• и начальным условиям a1=6, a2=9.
Задача 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Работа сдана в 2013 году.
Похожие материалы
" Дискретная математика" Контрольная работа. Вариант 10. СибГУТИ
nat2744
: 2 июня 2009
I. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать
100 руб.
Контрольная работа по дисциплине "Дискретная Математика". 10 вариант, СибГУТИ
BarneyL
: 16 мая 2018
No1 Проиллюстрировать равенство при помощи диаграмм Эйлера-Венна.
(A\B) (AC) = A\(B\C).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,
200 руб.
Дискретная математика. Контрольная работа. Вариант 10
Bodibilder
: 15 марта 2019
Вариант 10
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) È (AÇ C) = A\(B\C) б) (AÈ B) ́ (CÈ D)=(A ́ C)È (B ́ C)È (A ́ D)È (B ́ D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], провери
350 руб.
Контрольная работа. Дискретная математика. Вариант №10
Zenkoff
: 9 декабря 2014
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
3. Для булевой функции найти методом пр
60 руб.
СИБГУТИ, Дискретная математика
fred_student
: 2 октября 2014
В данном сборнике решения следующих лабораторных работ:
1. Множества и операции над ними
2. Отношения и их свойства
3. Генерация перестановок
4. Генерация подмножеств
5. Поиск компонент связности графа
Все работы написаны на языке Pascal.
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №10
SibGOODy
: 20 июля 2018
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,3,5,7,9}, A={1,3,9}, B={5,7,9}, C={4,5}, D={9}.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ист
500 руб.
Контрольная работа №1. Дискретная математика. Вариант №10
alli_2410
: 16 февраля 2016
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
3. Для булевой функции найти методом пр
40 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №10
Akyma
: 27 января 2015
Контрольная работа По дисциплине: Дискретная математика Вариант: 10
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты
150 руб.
Другие работы
Контрольная работа по дисциплине: Оптические интерфейсы. Вариант 13
Roma967
: 20 января 2023
Контрольные вопросы к разделу 1
1. Что называют оптическими физическими средствами сопряжения?
2. Устройство и назначение модуля SFP.
3. Конструктивные отличия модулей SFP от XFP, CFP и их характеристик.
4. Указать диапазоны волны оптического спектра, которые генерируются и детектируются в модулях SFP, XFP, CFP.
5. Назвать возможные расстояния оптической передачи, которые могут поддерживать модули SFP, XFP, CFP при использовании одномодовых волокон G.652.
6. Назвать типы лазеров и фотодетекторо
1500 руб.
Государственный контроль за соблюдением норм по охране труда и окружающей среды
evelin
: 29 октября 2012
СОДЕРЖАНИЕ
18. Государственный надзор и контроль за соблюдением законодательных и иных нормативных актов по охране труда. 3
70. Требования к охране окружающей среды для предприятий торговли и общественного питания. 6
Задача 2. 8
Задача 10. 11
Задача 17. 12
Библиографический список. 15
15 руб.
Сферические волны в однородной среде. Излучение. Расчёт размеров поперечных сечений круглого и прямоугольного волноводов для работы на основных типах волн.
Liya38
: 6 марта 2015
Задача 1.1. Найти амплитуды составляющих векторов напряженностей электрического и магнитного полей элементарного электрического диполя в вакууме в экваториальной плоскости. Длина диполя l, амплитуда тока I, расстояние до точки наблюдения r , частота питающего тока f.
Задача 1.2. Определить размеры поперечного сечения прямоугольного волновода для работы на основном типе волны Н10 . Частота генератора f, волновод заполнен диэлектриком с относительной диэлектрической проницаемостью e. Рассчитать
70 руб.
Контрольная работа по дисциплине «Финансовый менеджмент» (код – ФЖ00)
тантал
: 1 августа 2013
Вопрос 1. Какие притоки и оттоки характерны для основной инвестиционной и финансовой деятельности предприятия? Приведите примеры.
Вопрос 2. Раскройте понятие и покажите действие эффекта производственного рычага.
Вопрос 3. Как влияют цены на объем выручки от реализации и на прибыль предприятия? Какова структура розничных и оптовых цен? Приведите примеры.
Вопрос 4. Какие элементы содержит каждый из налогов? Какими способами они взимаются?
Вопрос 5. Определите роль нормирования средств на предп
100 руб.