Билет №4. Теория вероятностей и математическая статистика
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет № 4
Задача 1.
Локальная и интегральная теоремы Лапласа. Формула Пуассона
Задача 2.
Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Задача 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
Задача 1.
Локальная и интегральная теоремы Лапласа. Формула Пуассона
Задача 2.
Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Задача 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
Дополнительная информация
зачет . сдана 2015 году.
Похожие материалы
Теория вероятностей и математическая статистика. Билет №4
ANNA
: 18 февраля 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Пронумеруем все шары. Всего шаров 12. Исходом считаем выбор 5 любых шаров.
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непр
65 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
Damovoy
: 4 февраля 2021
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
61 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет № 4
Gila
: 17 января 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
growlist
: 11 апреля 2017
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
90 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4.
volodaiy
: 18 июня 2016
Билет № 4
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность ра
150 руб.
Теория вероятностей и математическая статистика. Работа экзаменационная. Билет №4
SemenovSam
: 2 мая 2016
ПОЛНОЕ ОПИСАНИЕ РАБОТЫ НА СКРИНШОТЕ!
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность р
120 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика Билет №4
tindrum
: 14 ноября 2011
1. Теоремы сложения и умножения вероятностей. Условная вероятность.
2. На предприятии 3 телефона, вероятности занятости которых 0,6; 0,4; 0,5 соответственно. Какова вероятность, что хотя бы один свободен?
3. Найти ряд распределения и среднее значение числа выпадений «герба» при 3-х бросаниях монеты.
4. Плотность распределения случайного вектора имеет вид
5.Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шес
50 руб.
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Другие работы
Методы обработки статистических данных
Lokard
: 2 февраля 2014
Курс содержит основы теории вероятностей и дает серьёзную подготовку по математической статистике, преимущественно по тем её разделам, которые используются при планировании и обработке экспериментов и измерений в педагогике и психологии.
Цель и задачи курса
– сообщить студентам основные теоретические сведения по общим и частным вопросам курса;
– научить студентов применять полученные знания при решении практических задач;
– учить студентов самостоятельно работать с нау
10 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Сети связи и системы коммутации. Вариант №16
IT-STUDHELP
: 9 декабря 2022
Лабораторная работа No1
по дисциплине:
«Сети связи и системы коммутации»
«ПРИНЦИП РАБОТЫ ETHERNET КОММУТАТОРА»
Цель работы
1. Изучение технической реализации коммутаторов.
2. Изучение классификации коммутаторов.
3. Изучение технических параметров коммутаторов.
4. Изучение дополнительных возможностей коммутаторов.
5. Изучение принципов работы Ethernet коммутатора.
-----------------------------------------------------------------------
Контрольные вопросы:
6.1. Назовите основные технические пар
950 руб.
Законы спроса и предложения в современной экономике
Slolka
: 28 февраля 2014
СОДЕРЖАНИЕ
Введение 3
1. Закон спроса 5
1.1) Понятие спроса 5
1.2) Виды спроса и его формирование 5
1.3) Закон спроса 7
1.4) Эластичность спроса 12
2. Закон предложения 14 2.1) Понятие предложения 14
2.2) Величина и функции предложения 14 2.3) Закон предложения 16
2.4) Эластичность предложения 19
3. Роль спроса и предложения в установлении равновесной
рыночной цены 21
3.1) Равновесная цена как пересечение кривых спроса и предложения 21
3.2) Избыточный спрос и избыточное предложение 21
3.3) Измен
15 руб.
Зачет по дисциплине: «Цифровая обработка сигналов». Билет №2.
teacher-sib
: 18 мая 2017
1. Устойчивость работы ЦФ.
2. Программирование МПК 1813ВЕ1.
3. Задача.
Дана передаточная характеристика аналогового
прототипа в виде:
Синтезировать структуру ЦФ.
50 руб.