Дисциплина «Математический анализ». Часть 2-я. Вариант № 4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где – дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где – дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 2015
Рецензия:
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 2015
Рецензия:
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
Похожие материалы
Вариант №4. Математический анализ (Часть 2)
MK
: 18 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3.Вычислить криволинейный интеграл по координатам
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
150 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Контрольная работа по дисциплине. Математический анализ (часть 2). Вариант №4
lfesta
: 21 января 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
150 руб.
Контрольная работа. «Математический анализ». Часть 2-я. Вариант №4
Nina1987
: 12 марта 2018
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант No 4
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
100 руб.
Контрольная По дисциплине: «Математический анализ». Часть 2
Галилео
: 2 сентября 2017
1. Вычислить несобственный интеграл или доказать его расходимость.
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
70 руб.
Математический анализ Часть 2.
Алексей134
: 24 декабря 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 0
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
Смотреть скриншот.
200 руб.
Математический анализ (часть 2)
5234
: 9 августа 2019
Вариант: 1
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - отрезок прямой, соединяющий точки и .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
420 руб.
Математический анализ (часть 2)
lisii
: 10 марта 2019
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
29 руб.
Другие работы
Социология политики Пьера Бурдье
evelin
: 4 февраля 2014
ОГЛАВЛЕНИЕ
Введение. Позиционирование Пьера Бурдье в современной социологии
Глава 1. Социология политики Пьера Бурдье – самостоятельная социологическая дисциплина
1.1 Основные методологические критерии формирования самостоятельной социологической дисциплины
1.2 Предмет, объект и категориальный аппарат социологии политики
1.3 Предмет, объект и категориальный аппарат социологии политики Пьера Бурдье
Глава 2. Политические закономерности Пьера Бурдье
2.1. Делегирование и политичес
5 руб.
Инженерная графика. Задание №35. Вариант №7. Деталь №2
Чертежи
: 30 сентября 2019
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения
Задание №35. Вариант №7. Деталь №2
Выполнить по аксонометрической проекции чертеж модели (построить три проекции и нанести размеры).
В состав работы входят 4 файла:
- 3D модель детали;
- ассоциативный чертеж;
- чертеж формата А4 в трёх видах комплексного оформления;
- чертеж формата А3 в трёх видах комплексного оформления.
Помогу с другими вариантами, пишите в ЛС.
60 руб.
Контрольная + 3 лабы Операционные системы, вариант 2
Дистанционное обучение СибГУТИ 2026
: 7 марта 2023
Лабораторная 1 Работа с файловой системой LINUX
Лабораторная 2 Управление командной оболочкой
Создание простейшего скрипта
Лабораторная 3 Взаимодействие процессов через канал FIFO
Контрольная работа Взаимодействие процессов через канал FIFO
1300 руб.
Кейнсианство
Qiwir
: 29 августа 2013
Введение
Джон Мейнард Кейнс – “отец-основатель” кейнсианской теории. В 1915 г. он завершает и впоследствии публикует свой “Трактат о вероятностях” - плод его увлечения математикой. Правда, философ Б. Рассел отозвался об этой работе Кейнса не без иронии: “Книга слишком трудна для того, чтобы ее слишком хвалить”.
Свою первую экономическую монографию “Индийская валюта и финансы” Кейнс опубликовал в 1913 г. Он рекомендовал сохранить подчиненное положение валюты доминиона по отношению к английской,
5 руб.