Вычислительная математика Лабораторная работа №1-5. Вариант №5
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,29).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. Система уравнений
N – последняя цифра пароля.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1, 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом, ,
N – последняя цифра пароля.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,29).
Для построения таблицы взять функцию N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1, ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. Система уравнений
N – последняя цифра пароля.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1, 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2, ), при этом, ,
N – последняя цифра пароля.
Дополнительная информация
Все работы успешно сданы в 2016 году. Оценка зачет
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант №5
sibguter
: 5 июня 2018
Тема: Интерполяция
Задание
Известно, что функция f(x) удовлетворяет условию |f^'' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
С помощью линейной интерполяции вычисляет значения фун
49 руб.
Вычислительная математика. Лабораторные работы №1-5. Вариант №5.
sibguter
: 17 октября 2018
Тема: Интерполяция
Задание
Известно, что функция f(x) удовлетворяет условию |f^\'\' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
С помощью линейной интерполяции вычисляет значения ф
59 руб.
Вычислительная математика. Лабораторные работы №1-№5. Вариант № 5
majik
: 15 мая 2015
Лабораторная работа №1. Интерполяция.
Лабораторная работа №2. Решение систем линейных уравнений.
Лабораторная работа №3. Решение нелинейных уравнений.
Лабораторная работа №4. Численное дифференцирование.
Лабораторная работа №5. Одномерная оптимизация.
250 руб.
Вычислительная математика. Лабораторные работы №№1-5. Вариант №5
Иван90
: 21 марта 2015
: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений фун
350 руб.
Вычислительная математика. Лабораторная работа №1-5. Вариант №1
gnv1979
: 1 мая 2016
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фу
50 руб.
Вычислительная математика. Лабораторная работа №1
nick0x01
: 22 марта 2014
Лабораторная работа №1. Интерполяция.
Известно, что функция f(x) удовлетворяет условию |f"(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляе
69 руб.
«Вычислительная математика» Лабораторная работа № 1
1231233
: 19 сентября 2010
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках,
по таблице значений
23 руб.
Вычислительная математика. Лабораторные работы 1-5. Вариант 0
Алексей134
: 24 марта 2020
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функц
150 руб.
Другие работы
Проект кротодренажної машини на базі трактора ХТЗ-17021
OstVER
: 24 декабря 2020
Зміст
Вступ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
І. Обгрунтування технічного рішення проекту. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.Огляд існуючих конструкцій робочого обладнання. . . . . . . . . . . . . . . . . . . . . .
1.1.2. Аналіз конструкцій вітчизняних машин . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.3. Аналіз конструкцій машин закордонного виробництва
750 руб.
Основы гидравлики и теплотехники МИИТ Задача 2.3 Вариант 7
Z24
: 16 октября 2025
В закрытом сосуде емкостью V=0,5 м³ содержится воздуха при давлении р1 и температуре t1. В результате охлаждения сосуда воздух, содержащийся в нем, теряет Q=100 кДж. Принимая теплоемкость воздуха постоянной, определить какое давление р2 и температура t2 устанавливаются после этого в сосуде.
120 руб.
Лабораторные работы №1,2,4,5 по дисциплине "Теория языков программирования"
denchik1994
: 22 марта 2015
Лабораторная работа № 1 Генерация цепочек языка
Лабораторная работа № 2 Моделирование работы ДКА
Лабораторная работа № 4 Перевод с помощью СУ-схемы
Лабораторная работа № 5 Перевод с помощью МП-преобразователя
200 руб.
Компьютерные технологии в науке и производстве (часть 2) Экзамен Билет 13
Эректус
: 13 сентября 2018
Билет № 13
1. Методы моделирования дискретных случайных величин.
2. Форматирование основного текста документа в Latex документе.
50 руб.