Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №2.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Описание
Лабораторная работа No1
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках xi=c+ih+((i mod 4+1)/5)*h(i+0,1,2,...,29) по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Для построения таблицы взять функцию f(x)=2c^(3)*sin(x/c), c=N+1. N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No2
1. Задание
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если max |xi^(k+1)-xi^(k)|<=0.0001 (k – номер итерации, k = 0,1,... ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. (см.скрин)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No3
1. Задание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |Xn+1 - Xn|<e , (e – заданная точность), при этом X≈(Xn + Xn+1)/2±e. Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси.
Вариант 2: x^(3)+3x^(2)-24x-10=0
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No4
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=c при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой f\\\'(x) можно найти по приближенной формуле: f\\\'(xi)=(f(xi+1)-f(xi-1))/2h. Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения f(x) с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения f\\\'(x) в точках xi=c+ih (i=0,1,2,...,20).
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию f(x)=1/c^(2)*cos(cx), c=3*(0.1(N+1))^(3), где N – последняя цифра пароля. Тогда, точное значение производной f\\\'(x)=-1/c*sin(cx)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No5
1. Задание
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001.
f(x)=e^(корень(x))*(x-1)*(x-10)*(x-N-1)*(x-0.5)
Считается, что требуемая точность достигнута, если выполняется условие |bk-ak|<e, (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, x`≈(a+b)/2, fmax=f(x`).
N – последняя цифра пароля.
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты.
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках xi=c+ih+((i mod 4+1)/5)*h(i+0,1,2,...,29) по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Для построения таблицы взять функцию f(x)=2c^(3)*sin(x/c), c=N+1. N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No2
1. Задание
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если max |xi^(k+1)-xi^(k)|<=0.0001 (k – номер итерации, k = 0,1,... ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы. (см.скрин)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No3
1. Задание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |Xn+1 - Xn|<e , (e – заданная точность), при этом X≈(Xn + Xn+1)/2±e. Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси.
Вариант 2: x^(3)+3x^(2)-24x-10=0
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No4
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\\\'\\\'(x)|<=c при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой f\\\'(x) можно найти по приближенной формуле: f\\\'(xi)=(f(xi+1)-f(xi-1))/2h. Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения f(x) с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения f\\\'(x) в точках xi=c+ih (i=0,1,2,...,20).
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию f(x)=1/c^(2)*cos(cx), c=3*(0.1(N+1))^(3), где N – последняя цифра пароля. Тогда, точное значение производной f\\\'(x)=-1/c*sin(cx)
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты
Лабораторная работа No5
1. Задание
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001.
f(x)=e^(корень(x))*(x-1)*(x-10)*(x-N-1)*(x-0.5)
Считается, что требуемая точность достигнута, если выполняется условие |bk-ak|<e, (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, x`≈(a+b)/2, fmax=f(x`).
N – последняя цифра пароля.
2. Описание вычислений и методов программирования
Текст программы
3. Экспериментальные результаты.
Дополнительная информация
В архиве отчеты + программы к каждой работе
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 2
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 22.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 5
Оценка:Зачет
Дата оценки: 22.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 2
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 19.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 22.12.2015
Рецензия:Уважаемый С*
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 5
Оценка:Зачет
Дата оценки: 22.12.2015
Рецензия:Уважаемый С*
Похожие материалы
Лабораторная работа №№1-5 по дисциплине: Вычислительная математика. Вариант №2
Jack
: 25 августа 2014
Лабораторная работа No1
1. Задание
Известно, что функция f(x) удовлетворяет условию |f\'\'(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет
450 руб.
Лабораторные работы №№1-5 по дисциплине "Вычислительная математика". Вариант №2
selkup
: 28 декабря 2013
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
150 руб.
Лабораторные работы №№1-5 по дисциплине вычислительная математика
Юлия102
: 1 марта 2017
Вариант 1.
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количес
300 руб.
Лабораторные работы №№1-5 По дисциплине: Вычислительная математика
nmaksim91
: 9 февраля 2015
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фун
390 руб.
Лабораторная работа №1-5 по дисциплине: Вычислительная математика. Вариант №5
IT-STUDHELP
: 25 октября 2016
Лабораторная работа No1
Интерполяция.
Задание
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значени
190 руб.
Лабораторные работы №1-5 по дисциплине Вычислительная математика. Вариант №1.
fominovich
: 19 июня 2016
1) Лабораторная работа №1. Интерполяция
2) Лабораторная работа №2. Решение систем линейных уравнений.
3) Лабораторная работа №3. Решение нелинейных уравнений.
4) Лабораторная работа №4. Численное дифференцирование.
5) Лабораторная работа №5. Одномерная оптимизация.
Во всех работах 1-ый вариант.
500 руб.
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №6
Учеба "Под ключ"
: 9 сентября 2017
Лабораторная работа No1
Интерполяция
Задание к работе
Известно, что функция f(x) удовлетворяет условию |f``(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интер
800 руб.
Лабораторные работы №1-5 по дисциплине: Вычислительная математика. Вариант №9.
teacher-sib
: 30 ноября 2016
Лабораторная работа No 1
Интерполяция.
Задание: Известно, что функция f(x) удовлетворяет условию |f"(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции
130 руб.
Другие работы
Теплотехника ЮУрГАУ 2017 Задача 2 Вариант 19
Z24
: 4 декабря 2025
17.24 Идеальный цикл газотурбинной установки (ГТУ)
Цикл осуществляется одним кг воздуха, как идеальным газом с подводом теплоты при постоянном давлении, где удельная теплоемкость при постоянном давлении, ср = 1008 Дж/(кг•К).
Задание
1. Вычертить принципиальную схему ГТУ, работающей по этому циклу, с указанием позиций всех элементов схемы.
2. Вычертить цикл в координатах рυ и Ts (без масштаба) с указанием процессов, из которых он состоит.
3. Рассчитать:
Удельное количество подведенной тепло
150 руб.
Механика Задача 2.29 Рисунок 9 Вариант 1
Z24
: 19 ноября 2025
Определить реакции опор А и В плоской балки, если на нее действуют сосредоточенные силы Р1 и Р2, алгебраический момент пары сил М и равномерно распределенная нагрузка интенсивностью q.
200 руб.
Теплотехника МГУПП 2015 Задача 3.1 Вариант 05
Z24
: 7 января 2026
Во сколько раз уменьшатся потери теплоты излучением в окружающую среду от изолированного паропровода длиной 1 м по сравнению с неизолированным (рис. 2), если:
внутренний диаметр трубопровода d1;
наружный диаметр трубопровода d2;
диаметр изолированного трубопровода d3;
степень черноты трубопровода εт;
степень черноты поверхности теплоизоляционного слоя εти;
температура поверхности теплоизоляционного слоя tти;
температура поверхности трубопровода tт.
150 руб.
Вопросы с ответами по теме "Маркшейдерско-геодезические приборы"
Donbass773
: 4 февраля 2018
1. Состав комплекта электронных тахеометров (ЭТ). Назначение составляющих комплекта ЭТ
2. Особенности устройства современных электронных тахеометров
3. Программное обеспечение электронных тахеометров
5. Операции поверки электронных тахеометров при подготовке к работе на станции
6. Поверка электронных тахеометров
7. Порядок работы с программным обеспечением электронных тахеометров при подготовке их к работе
8. Применение электронных тахеометров при создании планово-высотного обоснования
9. Ошибки
200 руб.