Контрольная работа по дискретной математике. Вариант №16
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (AC) = (AC) \ B б) (AC)(DB)(AB)(CD).
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(b,1),(b,2),(b,4)}; P2 = {(1,1),(1,3),(1,4),(2,2),(2,3),(3,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x – y) четно}.
No4 Доказать утверждение методом математической индукции:
(n•(2•n2 – 3•n + 1)) кратно 6 для всех натуральных n.
No5 Одиннадцать студентов должны сдавать зачет по четырем предметам: физике, архитектуре ЭВМ, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за тремя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 10, 16 или 20? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x•y6•z2, b=x2•y2•z2, c=x2•y8 в разложении (5•x+2•y2+3•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 9•an+1 + 14•an = 0• и начальным условиям a1=10, a2= –50.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v4 до остальных вершин графа, используя алгоритм Дейкстры.
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(b,1),(b,2),(b,4)}; P2 = {(1,1),(1,3),(1,4),(2,2),(2,3),(3,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P Z2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P = {(x,y) | (x – y) четно}.
No4 Доказать утверждение методом математической индукции:
(n•(2•n2 – 3•n + 1)) кратно 6 для всех натуральных n.
No5 Одиннадцать студентов должны сдавать зачет по четырем предметам: физике, архитектуре ЭВМ, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за тремя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 10, 16 или 20? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x•y6•z2, b=x2•y2•z2, c=x2•y8 в разложении (5•x+2•y2+3•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 9•an+1 + 14•an = 0• и начальным условиям a1=10, a2= –50.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v4 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Оценка отлично
Похожие материалы
Контрольная работа по Дискретной математике. Вариант №16
Omrade
: 10 февраля 2022
No1 Проиллюстрировать равенство при помощи диаграмм Эйлера-Венна.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,2),(a,3),(a,4),(b,1),(b,2),(b,4)}; P2 = {(1,1),(1,3),(1,4),(2,2),(2
50 руб.
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Контрольная работа по дискретной математике
temirovchem
: 9 июня 2019
1.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) б) в) г) д)
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
3. Для булевой функции найти методом преобразова
100 руб.
Контрольная работа по Дискретной математике
evgentys90x
: 13 марта 2017
Контрольная работа по Дискретной математике. Вариант № 5. Иркутский национальный исследовательский технический университет. 2016 г, оценка 4. преподаватель носырева л.л. заочно-вечерний факультет, информационные технологии, автоматизированые системы управления. без титульника, электронно вычеслительные машины, 2 курс. Экзамен. Кафедра кибернетики. Формат работы в pdf, листов в контрольной работе 19, темы множества, графы, отношения, функции, булевые функции
300 руб.
Контрольная работа по дискретной математике
ccc1981
: 13 декабря 2013
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ по
75 руб.
Контрольная работа по дискретной математике
19asv76
: 9 сентября 2010
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение
“Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить
Контрольная работа по дискретной математике
Kvalinesti
: 3 января 2009
вар 7
ЗАДАЧА №1.
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {10, 11, 12, 13, 14}.
A = {10, 11, 12}
B = {12, 13, 14}
C = {10, 14}
D = {12}
ЗАДАЧА №2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
7. “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
ЗАДАЧА № 3.
Для булевой функции найти методо
100 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №16
OLGA8
: 7 октября 2023
Вариант 16
No1 Проиллюстрировать равенство при помощи диаграмм Эйлера-Венна.
(A\B) (AC) = (AC) \ B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные
отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти
P = (P2P1)–1. Выписать области определения и области значений всех трех
отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью,
является ли отношение P2 рефлексивным, симметричным,
антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(b,1),(b,2),(b,4)
550 руб.
Другие работы
Рентабельность и ее виды
evelin
: 9 ноября 2013
Введение…………………………………………………………………………….3
1 Понятие рентабельности…………………………………………………………4
2 Виды рентабельности…………………………………………………………….7
3 Показатели рентабельности……………………………………………………...11
Заключение………………………………………………………………………….19
Библиографический список………………………………………………………..20
Введение
Как известно, непосредственным результатом коммерческой деятельности предприятия служит прибыль, но она часто весьма приблизительно отражает эффективность предпринимательской деятельности. Более точную оц
10 руб.
Характеристика Могилёвского района
DocentMark
: 28 сентября 2013
1. Географическое положение, климат, природа
Могилёвский район (белор. Магілёўскі раён) — административная единица в центре Могилёвской области Белоруссии. Административный центр — город Могилёв.
Могилевский район находится в самом центре Могилевской области. Граничит с Белыничским, Быховским, Дрибинским, Шкловским, Чаусским районами.
Могилевский район представляет собой неправильный четырехугольник, протянувшийся с севера на юг на 50 км, с запада на восток на 70 км. Площадь района 1910,5 кв
Гидравлика Задача 3.29 Вариант 4
Z24
: 20 ноября 2025
Определить силу давления жидкости Ж и точку ее приложения на круглую крышку люка диаметром d, закрывающую отверстие на наклонной плоской стенке с углом наклона α. Построить эпюру избыточного гидростатического давления на крышку люка.
200 руб.
Гидравлика Пермская ГСХА Задача 105 Вариант 5
Z24
: 6 ноября 2025
Вода подается насосом из водоема в приемный резервуар на высоту h. Всасывающая труба снабжена обратным клапаном с сеткой и имеет длину lвс. Требуется:
Подобрать диаметры трубопроводов обоих участков сети водонасосной установки.
Выбрать типоразмер центробежного насоса и построить его характеристики H = f1 (Q) и η = f2 (Q) по справочным данным (Приложение 14).
Графоаналитическим способом установить параметры режимной точки выбранного насоса.
Определить мощность на валу насоса по параметрам р
300 руб.