Контрольная и Лабораторные работы № 1-5 по дисциплине: Дискретная математика. Вариант № 5
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Контрольная работа. Вариант No 5
Задача No 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A B) \\ (A C) = A (B\\C) б) A (B C)=(A B) (A C).
Задача No 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,4),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,4),(2,1),(3,4),(4,3),(4,1)}.
Задача No 3
Задано бинарное отношение P R2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P = {(x,y) | (x – y) Z}.
Задача No 5
Компания из 9 человек поехала на охоту. Для организации ужина и ночлега нужно настрелять дичи, заготовить дрова и развести костер, приготовить еду, навести порядок в домиках. Для выполнения всех этих дел им необходимо разбиться на группы “охотники”, “костровые”, “повара”, “домоустроители”. Сколько существует различных способов такого разделения? Сколько существует различных способов устроиться на ночлег в четырех совершенно одинаковых домиках, если по одному размещаться нельзя?
Задача No 6
Сколько существует положительных трехзначных чисел:
а) не делящихся ни на одно из чисел 3, 4, 14?
б) делящихся ровно на одно из этих трех чисел?
Задача No 7
Найти коэффициенты при a=x4·y2·z2, b=x3·y2·z, c=y2·z4 в разложении (x2+4·y+5·z)6.
Задача No 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 + 4·an+1 + 3·an = 0· и начальным условиям a1=2, a2=4.
Задача No 9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача No 10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины V5 до остальных вершин графа, используя алгоритм Дейкстры.
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \\) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Лабораторная работа No 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
Задача No 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A B) \\ (A C) = A (B\\C) б) A (B C)=(A B) (A C).
Задача No 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,4),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,4),(2,1),(3,4),(4,3),(4,1)}.
Задача No 3
Задано бинарное отношение P R2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P = {(x,y) | (x – y) Z}.
Задача No 5
Компания из 9 человек поехала на охоту. Для организации ужина и ночлега нужно настрелять дичи, заготовить дрова и развести костер, приготовить еду, навести порядок в домиках. Для выполнения всех этих дел им необходимо разбиться на группы “охотники”, “костровые”, “повара”, “домоустроители”. Сколько существует различных способов такого разделения? Сколько существует различных способов устроиться на ночлег в четырех совершенно одинаковых домиках, если по одному размещаться нельзя?
Задача No 6
Сколько существует положительных трехзначных чисел:
а) не делящихся ни на одно из чисел 3, 4, 14?
б) делящихся ровно на одно из этих трех чисел?
Задача No 7
Найти коэффициенты при a=x4·y2·z2, b=x3·y2·z, c=y2·z4 в разложении (x2+4·y+5·z)6.
Задача No 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 + 4·an+1 + 3·an = 0· и начальным условиям a1=2, a2=4.
Задача No 9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача No 10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины V5 до остальных вершин графа, используя алгоритм Дейкстры.
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \\) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Лабораторная работа No 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
Дополнительная информация
Коментарии: Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 22.06.2016
Рецензия:Уважаемый,
Коментарии: Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Дата оценки: 03.09.2016
Рецензия:Уважаемый ,
Бах Ольга Анатольевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 22.06.2016
Рецензия:Уважаемый,
Коментарии: Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Дата оценки: 03.09.2016
Рецензия:Уважаемый ,
Бах Ольга Анатольевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Похожие материалы
Лабораторная работа №5 по дисциплине "Дискретная математика". Вариант №5.
XsEt
: 15 сентября 2013
Задание. Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа. При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода.
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения
20 руб.
Дискретная математика. Вариант 5
Петр27
: 3 октября 2018
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна:
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если Петр – отец Павла, а Павел – отец Ивана, то Петр – дед Ивана».
Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
Орграф з
100 руб.
Лабораторная работа № 5 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа № 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пр
48 руб.
Дискретная математика. Контрольная вариант №5
Vodoley
: 18 октября 2020
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U= {x,y,z,t,u},
A={t};B={x,u};C={x,y,z};D={y,z,t}.
а) C∪D ̅ ; б) (D ̅∩C) ̅ ;в) (A ∪C)∖B ;г) (U∖A)∖B ̅ ;д) (A ̅∩B ̅ ) ̅ .
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если Петр - отец Павла, а Павел - отец Ивана, то Петр - дед Ивана”.
III. Для булевой функции найти методом преобразо
55 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Дискретная математика. Вариант №20
IT-STUDHELP
: 7 октября 2023
Вариант No20
Контрольная работа
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\((AB)(AC)) = (A\B)\C б) (AB)(CB) = (AC)B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помо
1150 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №5
Учеба "Под ключ"
: 24 октября 2017
Задание 1. Задано универсальное множество U={x,y,z,t,u} и множества A={t}, B={x,u}, C={x,y,z}, D={y,z,t}. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) C∪ ̄D, б) ̄( ̄D∩C), в) A∪C, г) (U∖A)∖ ̄B, д) ̄( ̄A∩ ̄B).
Задание 2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
«Если Петр – отец Павла, а Павел – отец Ивана, то Петр – дед Ивана».
Задание 3. Для булевой функции
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №5
IT-STUDHELP
: 3 июля 2016
Задача No 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A B) \ (A C) = A (B\C) б) A (B C)=(A B) (A C).
Задача No 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью,
195 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №5.
ДО Сибгути
: 22 марта 2016
I.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
«Если Петр - отец Павла, а Павел - отец Ивана, то Петр - дед Ивана».
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орг
300 руб.
Другие работы
Логистика. 4-й вариант. Контрольная работа
karinjan
: 21 мая 2015
Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – А условных единиц, второй – В условных единиц, третий – С условных единиц. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны Д, Е и К условных единиц, соответственно.
Необходимо определить наиболее дешевый вариант перевозок, если транспортные расходы на одну условную единицу составляют:
Поставщики Потребители
1 2 3
1 7 9 11
2 4 5 8
3 6 7 12
Данные для выпо
200 руб.
Инженерная графика. Вариант №16. Задание №5. Ломаный разрез
Чертежи
: 12 апреля 2020
Всё выполнено в программе КОМПАС 3D v16
Задание СФУ
Вариант №16. Задание №5. На месте главного вида выполнить ломаный разрез.
В состав работы входят три файла:
- 3D модель детали;
- ассоциативный чертеж с необходимым разрезом;
- аналогичный обычный чертеж.
Помогу с другими вариантами, пишите в ЛС.
60 руб.
Економічні ті соціальні наслідки інфляції
evelin
: 7 ноября 2013
Тема курсової роботи: «Економічні ті соціальні наслідки інфляції».
Об’єктом дослідження є інфляція, й антиінфляційна політика в умовах української економіки.
Предметом дослідження соціально-економічні наслідки інфляції.
Метоюдослідження курсової роботи є теоретичні аспекти сутності інфляції й антиінфляційного регулювання, чинники інфляційних процесів та їх вплив на економіку держави, соціально-економічні наслідки інфляційних процесів в Україні розробка на цій основі механізму вдосконалювання
5 руб.
Контроль в управлении проектами
Elfa254
: 4 октября 2013
ВВЕДЕНИЕ.
1. Сущность контроля в управлении проектами в Украине. Системы автоматизированного проектирования.
2.Виды контроля в управлении проектами.
2.1 .Контроль по возмущению и комбинированный контроль.
2.2. Автоматический контроль, программное регулирование и следящие системы.
2.2.Статический и астатический контроль.
3.Общие принципы контроля.
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.
ВВЕДЕНИЕ.
Для начала введем понятие проекта и управления проектом.
Проект – это некоторая разра
30 руб.