Дискретная математика. Лабораторные работы 1-5.

Цена:
60 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon
material.view.file_icon Лабораторная работа №1.docx
material.view.file_icon
material.view.file_icon lab1.exe
material.view.file_icon lab1.pas
material.view.file_icon
material.view.file_icon Лабораторная работа №2.docx
material.view.file_icon
material.view.file_icon lab2.exe
material.view.file_icon lab2.pas
material.view.file_icon
material.view.file_icon Лабораторная работа №3.docx
material.view.file_icon
material.view.file_icon lab3.exe
material.view.file_icon lab3.pas
material.view.file_icon
material.view.file_icon Лабораторная работа №4.docx
material.view.file_icon
material.view.file_icon lab4.exe
material.view.file_icon lab4.pas
material.view.file_icon
material.view.file_icon Лабораторная работа №5.docx
material.view.file_icon
material.view.file_icon lab5.exe
material.view.file_icon lab5.pas
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.

2. Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера n ́ n;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).

3. Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.

4. Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.

5. Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No2.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.

Дополнительная информация

Все работы зачтены.
Дискретная математика. Лабораторная работа № 1
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
User svladislav987 : 16 апреля 2021
200 руб.
Дискретная математика. Лабораторная работа №1
Лабораторная работа No 1 Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). После ввода множес
User Bodibilder : 14 марта 2019
15 руб.
Дискретная математика. Лабораторная работа №1
Тема: Множества и операции над ними Задание Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается т
User sibguter : 5 июня 2018
49 руб.
Лабораторная работа № 1. Дискретная математика
Лабораторная работа No 1 Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств
User Antipenko2016 : 8 января 2017
150 руб.
Лабораторная работа №1 по дискретной математике
Работа No 1.Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается тре
User puzirki : 25 декабря 2013
200 руб.
Дискретная математика. Лабораторная работа №1
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
User PShulepov : 13 октября 2013
100 руб.
Дискретная математика. Лабораторная работа №1
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается требуемая операция (посредством текстового ме
User GTV8 : 10 сентября 2012
250 руб.
Лабораторная работа №1 по дискретной математике
Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается требуемая опер
User migsvet : 7 апреля 2012
100 руб.
Лабораторная работа №3 по дисциплине Теория связи. Вариант №02
Методические указание к лабораторной работе Тема: Исследование корректирующего кода 1. Лабораторное задание 1.1. Ознакомиться с интерфейсом программы и схемами кодера и декодера при (n,k)=(7,4). 1.2. Задать исходную комбинацию на входе кодера циклического кода (7,4) и произвести кодирование. 1.3. Затем в канале указать ошибки в любых битах получившейся в результате кодирования комбинации. 1.4. Произвести декодирование получившейся комбинации с ошибкой, с помощью декодера и сравнить с исход
User LLIax1985 : 5 ноября 2021
900 руб.
Лабораторная работа №3 по дисциплине Теория связи. Вариант №02
Нефтеловушка для раздельного улавливание утечек из сальниковых уплотнений насосов-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Нефтеловушка для раздельного улавливание утечек из сальниковых уплотнений насосов-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
100 руб.
Нефтеловушка для раздельного улавливание утечек из сальниковых уплотнений насосов-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Лабораторные работы 1-3. Использование ЭВМ в исследовании элементов оборудования систем передачи.Вариант №14 . 3 семестр.
Лабораторная работа №1 <<Исследование цепей на постоянном токе>> Цель работы: Освоить методы электрических измерений в цепях постоянного тока. Познакомиться с контрольно-измерительными приборами для измерения постоянного тока и напряжения. Научиться исследовать вольтамперные характеристики. Получить навыки создания электрических схем в среде программы Electronics Workbench. Лабораторная работа №2 <<ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ВО ВРЕМЕННОЙ ОБЛАСТИ>> Цель работы: Познакомиться с контроль
User 58197 : 21 сентября 2013
60 руб.
Зачетная работа по дисциплине: Теория массового обслуживания
Билет 4. 1. Классификация систем массового обслуживания. 2. Сети Джексона. Вопрос №1 Существуют следующие классификации систем массового обслуживания: 1. По виду входящего потока Приняты следующие обозначения входящих потоков и процессов обслуживания:
User Вася Пупкин : 4 декабря 2015
50 руб.
up Наверх