Дискретная математика. Контрольная работа. Вариант №11.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,2),(a,4),(b,3),(c,1),(c,2)}; P2 = {(1,1),(1,3),(2,4),(3,1),(3,4),(4,3),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | x2 + y2 = 1}.
No4 Доказать утверждение методом математической индукции:
(n3 + 5•n) кратно 6 для всех целых n 0.
No5 Бригада из семи взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 6, 14, 20? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x6•y•z3, b=x2•y•z3, c=y2•z4 в разложении (3•x3+5•y+2•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 – 5•an+1 + 2•an = 0• и начальным условиям a1=6, a2=3.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 1
0
0
1
0
1 0
0
1
0
1
0 0
1
1
0
0
1 1
0
0
0
0
0 0
1
1
0
0
1 0
0
0
0
0
1
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,2),(a,4),(b,3),(c,1),(c,2)}; P2 = {(1,1),(1,3),(2,4),(3,1),(3,4),(4,3),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | x2 + y2 = 1}.
No4 Доказать утверждение методом математической индукции:
(n3 + 5•n) кратно 6 для всех целых n 0.
No5 Бригада из семи взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 6, 14, 20? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x6•y•z3, b=x2•y•z3, c=y2•z4 в разложении (3•x3+5•y+2•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2•an+2 – 5•an+1 + 2•an = 0• и начальным условиям a1=6, a2=3.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 1
0
0
1
0
1 0
0
1
0
1
0 0
1
1
0
0
1 1
0
0
0
0
0 0
1
1
0
0
1 0
0
0
0
0
1
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
Похожие материалы
Дискретная математика. Контрольная работа. Вариант 11.
carbadjuec
: 23 июня 2011
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти ...
90 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №11
IT-STUDHELP
: 2 июля 2019
Задачи
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли от
350 руб.
Контрольная работа по дисциплине "Дискретная математика". Вариант №11
kanchert
: 31 марта 2014
Вариант 11
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, являет
Дискретная математика. Контрольная работа №1 - Вариант № 11
zexor
: 25 февраля 2013
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AÈ B) \ (AÇ B) = (A\B) È (B\A) б) U2 \ (A ́ B) = (` A ́ U) È (U ́ ` B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью,
100 руб.
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Дискретная математика, контрольная работа
Александра74
: 15 декабря 2019
No1. а) (A\B) (A\C) = A \ (BC) б) (AB)C=(AC)(BC).
No2.Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1.....
No3.Задано бинарное отношение P; найти его область определения и область значений......
No4.Доказать утверждение методом математической индукции:
(7n – 1) кратно 6 для всех целых n 1. ....No10.....
100 руб.
Контрольная работа по дискретной математике
temirovchem
: 9 июня 2019
1.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) б) в) г) д)
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
3. Для булевой функции найти методом преобразова
100 руб.
Дискретная математика. Контрольная работа
Андрей124
: 11 марта 2019
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если идёт дождь или дует сильный ветер, то погода не подходит для прогулки”.
Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-конт
20 руб.
Другие работы
Кран пневматический МЧ00.72.00.00. Деталировка
bublegum
: 18 марта 2021
Пневматический кран используется в приспособлении для зажима детали при ее обработке на металлорежущем станке.
В корпусе поз. 1 имеются три отверстия. Через верхнее отверстие поступает сжатый воздух, который под давлением (в зависимости от положения золотника поз. 3) поочередно, то через правое, то через левое отверстие корпуса попадает в полость пневматического цилиндра (на чертеже не показан), заставляя двигаться поршень. Педаль поз. 8 находится в верхнем положении при крайнем левом положении
600 руб.
Электропитание устройств и систем связи
gugych
: 23 января 2015
Вариант 23
Исходные данные
номинальное значение сетевого напряжения Uф=110 В; относительное отклонение напряжения питающей сети:
в сторону повышения амакс =0,2;
в сторону понижения амин =0,1;
номинальное значение выходного напряжения U0=12 В;
амплитуда пульсации выходного напряжения Uвых.m=0,12 В;
максимальное и минимальное значения тока нагрузки I0.макс =5А;
I0.мин.=1А;
частота преобразования fn=40 кГц;
диапазон температур окружающей среды -20...+40 ̊C;
пульсность сетевого выпрямителя p=6;
500 руб.
Итоговая работа по информатике, 1 курс, 5 билет
tatacava1982
: 16 января 2020
1 Определить, что вычисляет представленный алгоритм
for (i=0; i<n; i++)
if (A[i]%v!=0) { v--; i=-1; }
Варианты ответов:
1)первое некратное v число массива
2)все числа массива, некратные v
3)другое
2 Определить, что вычисляет представленный алгоритм
for (s=0,i=0; i<n; i++){
for (k=0,j=0; j<n; j++)
if (c[i]==c[j]) k++;
if (k>s) s=k,b=i;
}
Варианты ответов:
1)первое отрицательное число массива
2)количество отрицательных чисел массива
3)другое
3 Опреде
100 руб.
Ролик натяжной - А6ГР.01.24.00.000 Деталирование
HelpStud
: 17 сентября 2025
По заданию выполнено:
-3D модели всех деталей;
-3D сборка (с разносом компонентов);
-Сборочный чертеж;
-Спецификация.
- Чертежи всех деталей и стандартных изделий (деталирование)
А6ГР.01.24.00.000 СБ - Ролик натяжной Сборочный чертеж
А6ГР.01.24.01.000 СБ - Кронштейн сварной Сборочный чертеж
А6ГР.01.24.00.001 - Ступица
А6ГР.01.24.00.002 - Обод
А6ГР.01.24.00.003 - Ось
А6ГР.01.24.00.004 - Планка стопорная
А6ГР.01.24.01.001 - Кронштейн
А6ГР.01.24.01.002 - Пли
250 руб.