Теория вероятностей и математическая статистика( часть 1) Контрольная работа. Вариант №1
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Рабочий обслуживает три независимо работающих станка. Событие ={ i-ый станок в течении часа потребует наладки}, Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события
2. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
3. Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, что хотя бы при одном бросании появится «шестерка»?
4. Случайная величина в интервале (2, 4) задана плотностью распределения вне этого интервала . Найти моду, математическое ожидание и медиану величины .
5. Задана двумерная плотность вероятности системы случайных величин
Найти функцию распределения системы.
6. Устройство содержит 2000 одинаковых элементов с вероятностью отказа для каждого за время , равной 0,001. Найти вероятность того, что за время откажут а) меньше трех элементов; б) не меньше одного элемента.
N=2000
P=0,001
7. По данным задачи необходимо:
1. Начертить графики: полигон, гистограмм, эмпирическую функцию распределения.
2. Вычислить среднюю арифметическую, дисперсию, среднее квадратическое отклонение.
3. Рассчитать и построить теоретические нормальные кривые
4. Определить вероятность .
5. Произвести оценку степени близости теоретического распределения эмпирическому ряду с помощью критерия согласия Пирсона.
Распределение затрат на 100 руб. продукции по предприятиям хлопчатобумажной промышленности.
Инт-л 96,3-97,3 97,3–98,3 98,3–99,3 99,3–100,3 100,3-101,3 101,3-102,3 102,3-103,3 103,3-104,3 104,3-105,3
Кол-во предприятий 3 3 12 12 24 18 17 4 2
0,032 0,032 0,13 0,13 0,25 0,19 0,18 0,04 0,02
2. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
3. Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, что хотя бы при одном бросании появится «шестерка»?
4. Случайная величина в интервале (2, 4) задана плотностью распределения вне этого интервала . Найти моду, математическое ожидание и медиану величины .
5. Задана двумерная плотность вероятности системы случайных величин
Найти функцию распределения системы.
6. Устройство содержит 2000 одинаковых элементов с вероятностью отказа для каждого за время , равной 0,001. Найти вероятность того, что за время откажут а) меньше трех элементов; б) не меньше одного элемента.
N=2000
P=0,001
7. По данным задачи необходимо:
1. Начертить графики: полигон, гистограмм, эмпирическую функцию распределения.
2. Вычислить среднюю арифметическую, дисперсию, среднее квадратическое отклонение.
3. Рассчитать и построить теоретические нормальные кривые
4. Определить вероятность .
5. Произвести оценку степени близости теоретического распределения эмпирическому ряду с помощью критерия согласия Пирсона.
Распределение затрат на 100 руб. продукции по предприятиям хлопчатобумажной промышленности.
Инт-л 96,3-97,3 97,3–98,3 98,3–99,3 99,3–100,3 100,3-101,3 101,3-102,3 102,3-103,3 103,3-104,3 104,3-105,3
Кол-во предприятий 3 3 12 12 24 18 17 4 2
0,032 0,032 0,13 0,13 0,25 0,19 0,18 0,04 0,02
Дополнительная информация
Оценка: зачет
Похожие материалы
Теория вероятностей и математическая статистика (часть 1-я). Контрольная работа. Вариант №1
АнастасияАМ
: 20 марта 2019
Рабочий обслуживает три независимо работающих станка. Событие Аi ={ i-ый станок в течении часа потребует наладки}, Р(Аi)=0,2, i=1,2,3. Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события в).
Задача 10. В ящике 12 красных , 8 зеленых и 10 синих шаров. Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
Задача 20. Сколько раз
250 руб.
Теория вероятностей и математическая статистика (часть 1) Вариант 1
Amnesia
: 21 октября 2015
Лекция 1.
1. Рабочий обслуживает три независимо работающих станка. Событие Аi ={ i-ый станок в течении часа потребует наладки}, Р(Аi)=0,2, i=1,2,3. Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события в).
10. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
20. Сколько раз
200 руб.
Теория вероятностей и математическая статистика (часть 1). Контрольная работа. Вариант №6
Inna2708
: 9 декабря 2014
Глава 1
9. Три пассажира садятся в поезд, случайно выбирая любой из 6 вагонов. Какова вероятность, что хотя бы один из них сядет в первый вагон, если известно, что они сели в разные вагоны?
14. Известно, что 5-значный номер телефона имеет все цифры разные. Какова вероятность при этом условии, что среди них ровно четная (0 считаем четной цифрой и телефонный номер может начинаться с нуля).
32. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 90% пач
500 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика (часть 1). Вариант 8
Учеба "Под ключ"
: 16 июля 2025
Вариант 8
Задачи по теме: Основные понятия и термины. Основы комбинаторики. Классическая вероятность.
4. Пусть A,B,C – три произвольных события. Найти выражение для событий, состоящих в том, что: а) произошли все три события; б) произошло хотя бы одно из событий; в) произошли хотя бы два события; г) произошли два и только два события; д) произошло ровно одно событие; е) ни одно событие не произошло; ж) произошло не более двух событий.
15. Пять человек случайным образом (независимо друг от дру
1000 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика (часть 1). Вариант 5
xtrail
: 24 февраля 2025
6. В пакете с леденцами лежит 4 красных, 5 желтых и 6 зеленых конфет. Найти вероятность наудачу вынуть подряд 3 конфеты одного цвета.
18. Распределяются 5 шаров по трем ящикам. Известно, что нет пустых ящиков. При этом условии найти вероятность, что в первом ящике лежит один шар.
30. Из урны, где было 4 белых и 6 черных шаров, потерян один шар неизвестного цвета. После этого из урны извлечены (без возвращения) два шара, оказавшиеся белыми. При этом условии найти вероятность, что потерян был ч
1000 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
motilda
: 21 февраля 2025
Задание 1 . Комбинаторика.
Внимание! Под "словом" подразумивается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова К А Р П? Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Задание 2. Основные теоремы
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Най
350 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
Кот Леопольд
: 31 января 2021
Контрольная работа "Теория вероятностей и математическая статистика" Вариант №1
Задание 1
Сколько 4-х буквенных слов можно составить из букв слова КАРП ?
Задание 2
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Найти вероятность участия в соревновании произвольно выбранного спортсмена.
Задание 3
Найти математическое ожидание, дис
100 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
VasgenXII
: 25 октября 2019
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
300 руб.
Другие работы
Затраты рабочего времени и методы их изучения
ostah
: 18 сентября 2012
Значение изучения затрат рабочего времени
Изучение затрат рабочего времени имеет большое значение, т. к. исходя из информации, получаемой в его результате решается большинство задач, связанных с организацией труда и его нормированием.
Исследования проводятся с целью определения структуры операций, затрат рабочего времени, рационализации приемов и методов труда, выявления причин невыполнения норм, нерациональных затрат и потерь рабочего времени, получения данных о факторах, влияющих на время вы
20 руб.
Гидравлика ИжГТУ 2007 Задача 1.2 Вариант 2
Z24
: 20 октября 2025
Определить высоту столба жидкости h5, если задано избыточное давление воздуха в сосуде р0изб и известны все остальные высоты.
Плотности жидкостей:
вода — 1000 кг/м³;
спирт — 800 кг/м³;
ртуть — 13600 кг/м³;
глицерин — 1245 кг/м³.
120 руб.
Реле электромагнитное - РЭ.44.00.00 ВО
.Инженер.
: 12 апреля 2025
В.С. Мамаев, Н.А. Демин. Альбом чертежей для чтения и деталирования. РЭ.44.00.00 - Реле электромагнитное. Деталирование. Чертеж общего вида. Модели.
Реле электромагнитное предназначено для автоматических переключений в управляемой электрической цепи малой мощности. При подключении катушки 4 к электропитанию сердечник 3 втягивается. Детали, связанные с ним, перемещаются и осуществляется замыкание электрической цепи.
В состав работы входят:
-Чертеж общего вида
-Спецификация
-Чертежи всех деталей
1000 руб.
Отраслевые рынка. Кейс 1.
studypro2
: 9 марта 2017
КЕЙСЫ:
Кейс 1. Государство дозирует некоторые поставляемые им частные товары и смешанные общественные (на которые велик спрос) разными способами. Объясните как каждый из них дозируется, и рассмотрите эффект альтернативных дозирующих систем:
б) здравоохранение в России;
300 руб.