Теория вероятностей и математическая статистика( часть 1) Контрольная работа. Вариант №1
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Рабочий обслуживает три независимо работающих станка. Событие ={ i-ый станок в течении часа потребует наладки}, Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события
2. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
3. Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, что хотя бы при одном бросании появится «шестерка»?
4. Случайная величина в интервале (2, 4) задана плотностью распределения вне этого интервала . Найти моду, математическое ожидание и медиану величины .
5. Задана двумерная плотность вероятности системы случайных величин
Найти функцию распределения системы.
6. Устройство содержит 2000 одинаковых элементов с вероятностью отказа для каждого за время , равной 0,001. Найти вероятность того, что за время откажут а) меньше трех элементов; б) не меньше одного элемента.
N=2000
P=0,001
7. По данным задачи необходимо:
1. Начертить графики: полигон, гистограмм, эмпирическую функцию распределения.
2. Вычислить среднюю арифметическую, дисперсию, среднее квадратическое отклонение.
3. Рассчитать и построить теоретические нормальные кривые
4. Определить вероятность .
5. Произвести оценку степени близости теоретического распределения эмпирическому ряду с помощью критерия согласия Пирсона.
Распределение затрат на 100 руб. продукции по предприятиям хлопчатобумажной промышленности.
Инт-л 96,3-97,3 97,3–98,3 98,3–99,3 99,3–100,3 100,3-101,3 101,3-102,3 102,3-103,3 103,3-104,3 104,3-105,3
Кол-во предприятий 3 3 12 12 24 18 17 4 2
0,032 0,032 0,13 0,13 0,25 0,19 0,18 0,04 0,02
2. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
3. Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, что хотя бы при одном бросании появится «шестерка»?
4. Случайная величина в интервале (2, 4) задана плотностью распределения вне этого интервала . Найти моду, математическое ожидание и медиану величины .
5. Задана двумерная плотность вероятности системы случайных величин
Найти функцию распределения системы.
6. Устройство содержит 2000 одинаковых элементов с вероятностью отказа для каждого за время , равной 0,001. Найти вероятность того, что за время откажут а) меньше трех элементов; б) не меньше одного элемента.
N=2000
P=0,001
7. По данным задачи необходимо:
1. Начертить графики: полигон, гистограмм, эмпирическую функцию распределения.
2. Вычислить среднюю арифметическую, дисперсию, среднее квадратическое отклонение.
3. Рассчитать и построить теоретические нормальные кривые
4. Определить вероятность .
5. Произвести оценку степени близости теоретического распределения эмпирическому ряду с помощью критерия согласия Пирсона.
Распределение затрат на 100 руб. продукции по предприятиям хлопчатобумажной промышленности.
Инт-л 96,3-97,3 97,3–98,3 98,3–99,3 99,3–100,3 100,3-101,3 101,3-102,3 102,3-103,3 103,3-104,3 104,3-105,3
Кол-во предприятий 3 3 12 12 24 18 17 4 2
0,032 0,032 0,13 0,13 0,25 0,19 0,18 0,04 0,02
Дополнительная информация
Оценка: зачет
Похожие материалы
Теория вероятностей и математическая статистика (часть 1-я). Контрольная работа. Вариант №1
АнастасияАМ
: 20 марта 2019
Рабочий обслуживает три независимо работающих станка. Событие Аi ={ i-ый станок в течении часа потребует наладки}, Р(Аi)=0,2, i=1,2,3. Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события в).
Задача 10. В ящике 12 красных , 8 зеленых и 10 синих шаров. Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
Задача 20. Сколько раз
250 руб.
Теория вероятностей и математическая статистика (часть 1) Вариант 1
Amnesia
: 21 октября 2015
Лекция 1.
1. Рабочий обслуживает три независимо работающих станка. Событие Аi ={ i-ый станок в течении часа потребует наладки}, Р(Аi)=0,2, i=1,2,3. Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события в).
10. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?
20. Сколько раз
200 руб.
Теория вероятностей и математическая статистика (часть 1). Контрольная работа. Вариант №6
Inna2708
: 9 декабря 2014
Глава 1
9. Три пассажира садятся в поезд, случайно выбирая любой из 6 вагонов. Какова вероятность, что хотя бы один из них сядет в первый вагон, если известно, что они сели в разные вагоны?
14. Известно, что 5-значный номер телефона имеет все цифры разные. Какова вероятность при этом условии, что среди них ровно четная (0 считаем четной цифрой и телефонный номер может начинаться с нуля).
32. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 90% пач
500 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
motilda
: 21 февраля 2025
Задание 1 . Комбинаторика.
Внимание! Под "словом" подразумивается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова К А Р П? Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Задание 2. Основные теоремы
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Най
350 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
Кот Леопольд
: 31 января 2021
Контрольная работа "Теория вероятностей и математическая статистика" Вариант №1
Задание 1
Сколько 4-х буквенных слов можно составить из букв слова КАРП ?
Задание 2
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Найти вероятность участия в соревновании произвольно выбранного спортсмена.
Задание 3
Найти математическое ожидание, дис
100 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
VasgenXII
: 25 октября 2019
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
300 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
Gila
: 17 января 2019
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
200 руб.
Контрольная работа теория вероятности и математическая статистика Вариант №1
sxesxe
: 6 декабря 2016
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одн
100 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.