Проведение газодинамических исследований скважин на Астраханском газоконденсатном месторождении ГКМ-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслужива
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Проведение газодинамических исследований скважин на Астраханском газоконденсатном месторождении ГКМ-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
Современный этап развития мировой энергетики обуславливает бурное развитие газовой промышленности в большинстве промышленно развитых странах мира. Совместная доля нефти и природного газа в мировом произ-водстве энергоресурсов составляет почти 65 %. В Российской Федерации эта доля превышает 80 %, из которых 49 % приходится на природный газ. Роль газа, как наиболее экологически чистого вида топлива заметно возрастает и его доля в энергобалансе мира к середине XXI века может составить 30 %.
Для России, имеющей 33 % разведанных запасов и более 40 % про-гнозных ресурсов газа, природный газ является не только эффективным энергоносителем, а так же важнейшим средством решения сложных социаль-ных и экономических проблем, имеющим первостепенное значение для по-вышения в целом уровня жизни населения. Экспорт газа позволяет покры-вать острую необходимость валютных поступлений в бюджет страны, явля-ется гарантом финансовой стабилизации и подтверждением платёжеспособ-ности перед иностранными кредиторами. Валютные поступления от газовой промышленности обеспечивают социальные затраты общества, прежде всего на медицину, образование, искусство и науку. Сооружение новых газотранс-портных систем и реконструкция действующих обеспечивает заказами отече-ственные предприятия, привлекает инвестиции и создаёт новые рабочие ме-ста. Трудно переоценить значение газификации малых городов, посёлков и сёл, а так же связанный с этим вклад газовой промышленности России в со-хранение многоукладности экономики и национальную безопасность страны в целом.
Первостепенное значение для развития топливно-энергетической от-расли России имеет освоение, ввод и рациональная эксплуатация крупней-ших в мире по запасам углеводородного сырья месторождений Западной Сибири. Основу успешного развития топливной индустрии составляют до-стижения научно-технического прогресса в области физики пласта, внедре-ние современной техники и технологии добычи нефти и газа, совершенство-вание проектных систем разработки и эксплуатации нефтяных и газовых ме-сторождений, разработка и внедрение методов увеличения компонентоотда-чи пластов.
В настоящее время огромное внимание предприятиями газодобываю-щей промышленности уделяется вопросам качественного исследования сква-жин и пластов. Методы исследования скважин и пластов предназначены для получения информации об объекте разработки, об условиях и интенсивности притока флюидов в скважину, об изменениях, происходящих в пласте в про-цессе его разработки. Такая информация необходима для организации пра-вильных, экономически оправданных процессов добычи нефти, для осу-ществления рациональных способов разработки месторождения, для обос-нования способа добычи нефти, выбора оборудования для подъема жидко-сти из скважины, для установления наиболее экономичного режима работы этого оборудования при достижении наиболее высокого коэффициента неф-теотдачи.
В процессе выработки запасов нефти условия в нефтяной залежи и в скважине изменяются. Скважины обводняются, пластовое давление снижает-ся, газовый фактор изменяется. Это заставляет постоянно получать и непре-рывно обновлять информацию о скважинах и о пласте. От наличия такой до-стоверной информации зависит правильность принимаемых решений по осуществлению на скважинах или на пласте тех или иных геолого-технических мероприятий, направленных на повышение отбора нефти.
После того, как установлены промышленные запасы нефти или газа и принято решение о вводе залежи в промышленную эксплуатацию, присту-пают к составлению технологической схемы или проекта разработки залежи. Для этой цели, кроме той информации, которая уже имеется и использована в подсчете запасов, необходим комплекс данных об изменении гидродинами-ческих характеристик пласта по площади залежи и в законтурной области, о продуктивности пласта в целом и отдельных его интервалов в различных ча-стях залежи, об эффективности применяемых способов вскрытия пласта и перфорации скважин, об условиях работы скважин и др.
В процессе промышленной эксплуатации скважин их исследуют глав-ным образом с целью уточнения гидродинамических характеристик пластов, выявления действительной технологической эффективности отдельных эле-ментов принятой системы разработки (система поддержания пластового дав-ления, схема расположения скважин, принятый способ вскрытия пластов, способ эксплуатации скважин и др.) и определения эффективности проводи-мых мероприятий по повышению или восстановлению производительности добывающих скважин.
При исследовании газовых скважин широко применяют различные ме-тоды определения газоконденсатности залежей с помощью передвижных установок, снабженных специальными сепараторами. Цель исследования – определение количества сырого конденсата, выделяющегося в процессе се-парации газа при различных давлениях и температурах, количества твердых примесей и жидкой фазы, выделяющейся на забое и по стволу скважины в результате снижения давления и температуры от пластовых условий до зна-чений, при которых газ поступает на устье скважины и др.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Состояние разработки месторождения
Расположение добывающих скважин в центральной части залежи после 25 лет разработки не привело к образованию застойных зон на ее крыльевых участках. Характер распределения пластового давления свидетельствует о довольно неплохой газодинамической связи по площади и позволяет рас-сматривать процесс разработки залежи как единой газодинамической систе-мы.
Давление в призабойных зонах большинства скважин выше давления начала конденсации. В то же время в зонах депрессионных воронок УППГ-1 и УППГ-2 по ряду скважин забойные давления достигли давления начала конденсации 36,0-40,0 МПа, однако конденсато-газовый фактор (КГФ) по насыщенному конденсату за время эксплуатации не изменился и составил 350,0 г/м'\ потерь конденсата отмечено не было.
По результатам газоконденсатных исследований установлена средняя концентрация основных компонентов пластового газа: сероводорода - 25-30%, углекислого газа - 13-18%, метана и этана - 53,68%, среднее потенци-альное содержание конденсата - 262,76 г/м3.
Обводненность добываемой продукции установлена по результатам га-зогидродинамических исследований скважин. В 2008 году в 41 скважине установлено наличие подошвенной воды в их продукции.
Технологический режим работы скважин устанавливается ежеквар-тально по результатам их исследований. Методика установления технологи-ческого режима включает ряд расчетных методов, основанных на замере устьевых параметров скважин.
Результаты расчетов и исследований сводятся к графическому пред-ставлению -графику в координатах «устьевое давление - дебит газа сепара-ции», позволяющему определить область работы скважины, т.е. устанавли-ваются ограничения на параметры технологического режима и выбирается оптимальный технологический режим конкретно для каждой скважины.
Для условий АГКМ ограничения параметров технологического режи-ма следующие: забойное давление должно быть выше давления начала кон-денсации во избежание выпадения конденсата в призабойной зоне пласта;
- полный вынос жидкости с забоя скважин. Выполнение данного усло-вия определяется величиной скорости потока флюида у башмака насосно-компрессорных труб (НКТ) выше критической, при этом скорость потока определяется дебитом, давлением на забое и проходным сечением НКТ и должна быть выше критической скорости;
-срыв пленки ингибитора на внутренней поверхности НКТ при превы-шении скорости восходящего потока свыше 10 м/с, который приводит к ухудшению защиты оборудования от воздействия агрессивных компонентов.
Для скважин с наличием подошвенной воды в их продукции устанав-ливается минимально возможный дебит, обеспечивающий вынос выпавшей на забое жидкости. Режимы работы скважин устанавливаются с учетом вы-шеперечисленных ограничений и результатов их исследований на контроль-ном сепараторе.
Режим работы залежи - газовый, контроль за данным режимом осу-ществляется путем наблюдения за изменением таких характеристик залежи как: положение газоводяного контакта (ГВК), обводненность продукции скважин, изменение состава добываемой смеси, динамика пластового давле-ния. С использованием промысловых данных также строится и анализирует-ся зависимость приведенного пластового давления от накопленчой добычи пластовой смеси. Все вышеупомянутые параметры сопоставляются, анализи-руются, а затем выдается заключение о режиме работы залежи на данном этапе ее разработки.
Обводнение добываемой продукции АГКМ можно также объяснить геофлюидо-динамическими процессами на разрабатываемом участке, в ре-зультате которых вода из плотного низкопорового коллектора отжимается в продуктивную часть коллектора по мере снижения пластового давления.
Анализ зависимостей приведенного пластового давления от накоплен-ной добычи пластовой смеси, неизменное первоначальное положение ГВК, низк'ое значение обводненности добываемой смеси подтверждает предполо-жение о существовании в залежи первоначального газового режима.
Перспективы развития Астраханского газового комплекса связаны с увеличением добычи природного газа за счет ввода в эксплуатацию восточ-ных участков, расположенных в 25-30 км от основной зоны. При этом пред-полагается, что основной объем выделенных на промысле кислых компонен-тов - сероводорода и углекислого газа - будет закачан в выработанные пла-сты на зоне действия УППГ-1 и УППГ-2, что позволит не создавать установ-ки по производству серы. Добытый нестабильный конденсат направляется на Астраханский газоперерабатывающий завод - для обеспечения его загрузки после реконструкции.
Таким образом, перспективы развития Астраханского газоконденсат-ного комплекса напрямую зависят от утилизации кислых компонентов пла-стового газа, утилизации попутных вод и ограничений по экологической нагрузке.
Основной продуктивной тощей на Астраханском газоконденсатном ме-сторождении являются среднекаменноугольные карбонатные отложения башкирского яруса. Промышленная их газоносность установлена в скв. №1 Аксарайской, скв.5, 8, 25, 26, 32 Астраханских. Максимальные дебиты газа до 1023,8 тыс. м3/сут через 28 мм диафрагму были получены из интервала 3936-3915 м скв №8 Астраханской. ГВК отбивается на абсолютных отметках минус 4073 м. состав газа: углеводород - 60,4% , сероводород -20,7%, угле-кислый газ - 17,9%. Начальный конденсатный фактор составляет 240-560 см3/м3.
Начальное пластовое давление в интервале 4100-3990 м скв №5 Астра-ханская равнялось 61,74 МПа, пластовая температура в скв. №3 Заволжская на глубине 4200 м составляла 1100С.
Протоколом ГКЗ по запасам при Совете Министров СССР №9023 от 28 июня1982 г. утверждены балансовые запасы газа и компонентов Астра-ханского ГКМ по категориям С1 и С2 левобережной и по категории С2 в правобережной частях месторождения. Решено считать развернутым до ка-тегории С1 часть Астраханского месторождения подготовленной к опытно-промышленной разработке.
В скв. №1 Аксарайской из кровли известняков башкирского яруса в инетрвале 3981-2994 м во время подъема инструмента был получен приток газа с дебитом ориентировано 500 тыс. м3/сут.
Газ имел следующий состав: метан - 58,18%,этан - 7,38%, пропан - 1,10%, бутан - 0, 64%,азот - 4, 05%, углекислый газ - 13, 18%, сероводород - 15,47%.
В скв. №5 Ширяевской, расположенной в 5 км восточнее скв №1 Акса-райской, при опробовании известняков башкирского яруса в интервале 4100-4070 м., получен промышленный приток газа с конденсатором. Дебит газа на 13, 7мм штуцере составил 339 тыс. /сут., а абсолютно свободный де-бит равен 838 тыс. /сут. Состав газа: метан -58, 86%, этан -1, 88%, пропан-0, 60%, азот-0, 91%, углекислый газ-11, 00%, сероводород-26, 6%. Относи-тельный удельный вес-0, 8552.
Астраханское газоконденсатное месторождение приурочено к цен-тральной, наиболее приподнятой части Астраханского свода. Продуктивны здесь подсолевые карбонатные отложения башкирского яруса, залегающие на глубинах 3900-4100 м. Залежь массивного типа, для нее характерны АВПД (63 МПа). Дебиты газа достигают 720 тыс. м3/сут при 15-мм штуцере, содержание стабильного конденсата составляет от 240 до 570 см3/м3, плот-ность его 0,81 г/см3. Газ имеет уникальный состав (%): в нем присутствует 50-55 УВ (в том числе 46- 53 метана), 23 сероводорода, 20 углекислого газа, до 2 азота.
При выявлении особенностей формирования месторождения анализи-ровались литолого-фациальные и геохимические условия разреза с целью выделения нефтегазоматеринских толщ (НГМТ) и проводились палеотекто-нические реконструкции, позволяющие проследить динамику процессов нефтегазообразования и нефтегазонакопления во времени и в пространстве. Через Астраханский свод и смежный с ним Сарпинский прогиб были постро-ены современный геологический профиль и палеопрофили к началу кунгур-ского и юрского времени. Проведенные по физическим константам расчеты палеотемператур этапов позволили исходя из современных представлений о стадийности процессов нефтегазогенерации с развитием главных фаз нефте- и газообразования определить время вхождения НГМТ в зоны максимального проявления этих процессов, длительность пребывания в этих зонах и время выхода из них.
Месторождения сложного состава, освоение и эксплуатация которых возможны только на основе создания газохимических комплексов, содержат в своем составе помимо метана значительные количества более тяжелых уг-леводородов, включая конденсат, сероводород, углекислый газ, азот, мер-каптаны, гелий, а также целый ряд микрокомпонентов.
Астраханское месторождение (АГКМ) — первое в нашей стране место-рождение, в котором объемное содержание метана около 50 %, а кислых компонентов — более 40 %. Пластовая смесь представляет собой недонасы-щенную газоконденсатную систему. Давление начала конденсации 38— 40 МПа. Среднее содержание конденсата 260 г/м3, пластовая температура 110 0С.
Основные проблемы разработки Астраханского месторождения связа-ны с большой глубиной залегания (более 4000 м), аномально высоким пла-стовым давлением (около 63 МПа), неупрутим характером деформирования пласта- коллектора, сложным составом природного газа, содержащего зна-чительное количество неуглеводородных коррозионноактивных компонен-тов (до 25% H2S и 16% СО2), повышенным содержанием конденсата (260 г/м3).
Отечественная газовая промышленность сталкивается впервые с таким типом высокосернистого месторождения, приуроченного к низкопроницае-мым коллекторам.
Проблема переработки высокосернистого газа усложняется наличием в газе высокой концентрации СО2, сероорганических соединений (меркаптаны, COS, CS2, и т.д.), тяжелых углеводородов.
Особого внимания требуют низкопроницаемые коллекторы АГКМ, для которых необходимо разрабатывать новые физико-химические методы воз-действия на призабойную зону и пласт в целом. Следует отметить, что на первом этапе карбонатный коллектор АГКМ достаточно хорошо реагирует на массированные спиртокислотные обработки, позволяющие снизить рабо-чие депрессии на пласт.
Эксплуатация АГКМ проходит в осложненных условиях, обусловлен-ных низкой продуктивностью коллекторов, высокими депрессиями на пласт, повышенной коррозионной агрессивностью и токсичностью газа, гидрато-образованием, выпадением конденсата в пласте, возможным сероотложением в пласте и коммуникациях.
Значительная часть месторождения приурочена к пойменной зоне и, по-видимому, не будет разбуриваться длительное время,
Требует обоснования способ разработки АГКМ, так как при разработ-ке на истощение коэффициент газоотдачи оценивается в 0,5 — 0,6. В связи с этим могут возникнуть новые крупномасштабные задачи по поддержанию пластового давления в слабопроницаемых деформируемых коллекторах за счет обратной закачки сухого газа и СО2.
При разработке месторождения на истощение после снижения давления в залежи ниже давления начала конденсации рабочие дебиты скважин могут резко снизиться из-за "запирающего" эффекта, связанного с выпадением кон-денсата в призабойной зоне. Кроме того, снижение давления может привести к уменьшению дебитов из-за необратимых деформаций пласта, и поэтому основной эффект от поддержания давления связан с экономией значительно-го числа скважин благодаря замедлению темпов снижения рабочих дебитов.
Поддержанию рабочих дебитов, а также повышению газо- и конденса-тоотдачи могут способствовать и циклические закачки СО2 в призабойную зону скважин.
Таким образом, специфика АГКМ потребовала новых систем размеще-ния скважин, совершенствования технологии бурения, добычи, промысловой подготовки, переработки газа и конденсата, новых решений по защите обо-рудования от коррозии и охране окружающей среды.
Астраханское месторождение служит сырьевой базой газохимического комплекса с периодом стабильных поставок сырья не менее 25-30 лет.
Газодинамическая модель АГКМ включает процесс двумерной филь-трации пластовой смеси в деформируемой пористой среде, уравнение состо-яния газа, зависимости изменения пористости, проницаемости и вязкости от давления.
Первичная модель разработки АГКМ была принята в виде прямо-угольника. Границы уточненной модели показаны на рис. 2.1.
Рис. 2.1. Расчетная геометрическая модель AГКM.
Модель разделена на девять зон в соответствии с числом УППГ, вво-димых в эксплуатацию, Запасы газа приняты по объекту I (прикамский и се-веро-кельтменский горизонты); объект II (краснополянский горизонт) счи-тался непромышленным. Начальные термобарические условия залежи: тем-пература 106 0С, давление 62,4 МПа. Пористость принята постоянной и рав-ной 0,097.
Карта проницаемости подготовлена по результатам обработки иссле-дований разведочных и добывающих скважин.
Проницаемость призабойной зоны принималась с учетом СКО (увели-чение дебитов на 50%); для перехода к характеристике пласта проницаемость призабойной зоны уменьшалась в 1,5 раза.
В процессе разработки месторождения вводилось дополнительное ограничение — при снижении текущего пластовоro давления ниже 46 МПа депрессия на пласт снижалась с 15 до 12 МПа с целью отодвинуть начало ре-троградной конденсации в пласте и сроки ввода ДКС.
Начальный расчетный состав пластовой смеси был принят постоянным по площади и соответствовал данным геохимических исследований по разве-дочным скважинам. Начальное содержание конденсата 260 г/м3 газа сепара-ции. Давление начала конденсации 40 МПа. Расчет добычи конденсата про-водили по каждой скважине, так как определение его добычи по "средней" скважине неправомерно после того, как среднее давление начнет прибли-жаться к давлению начала конденсации.
Проектные добывающие скважины размещались в левобережной части месторождения с учетом охранных зон. Режим работы залежи — газовый.
Дебит скважин. Для условий АГКМ дебит — один из наиболее трудно прогнозируемых параметров. Это связано, во-первых, с недостаточной ин-формацией о продуктивности пласта по площади залежи на первом этапе проектирования, во-вторых, эксплуатация глубокозалегающих месторожде-ний природного газа на истощение сопровождается изменением во времени и по объему таких параметров, как пористость и проницаемость, вязкость и сверхсжимаемость газа, что необходимо учитывать при прогнозировании показателей раз- работки, причем вязкость и сверхсжимаемость существенно зависят от компонентного состава газа.
Кроме этого, для метана характерно снижение дебита для любого рас-смотренного типа коллектора. В то же время для смеси характер изменения дебита существенно зависит от степени сжимаемости породы.
В зависимости от степени деформируемости горных пород при сниже-нии пластового давления дебит скважин может изменяться в широких преде-лах. В условиях упругопластичных и пластичных деформаций дебит сква-жин резко снижается. В слабосжимаемых и несжимаемых коллекторах деби-ты скважин, дренирующих залежи со сложным составом газа, могут при по-стоянной депрессии на пласт даже возрастать в течение определенного вре-мени. Это объясняется изменением физических свойств природного газа – снижением вязкости и изменением коэффициента z.
Глубокие депрессионные воронки, характерные для низкопроницае-мых коллекторов, могут резко понижать добывные возможности скважин из-за быстрого снижения пластового давления (особенно в первый период), вы-падения конденсата в пласте и возможного "запирающего" эффекта, упруго-пластичных деформаций коллектора, Поэтому один из главных принципов размещения скважин — максимальное и скорейшее использование зоны экс-плуатационного разбуривания с тем, чтобы добиться быстрого выявления участков с наиболее высокой продуктивностью, минимального снижения пластового давления по площади, использования площадных перетоков газа из охранных, пойменной и периферийных зон.
Предложенная система размещения скважин учитывает также возмож-ность перехода к частичному поддержанию пластового давления.
Для Астраханского месторождения с некоторой дифференциацией рас-пределения основных составляющих пластового сырья (сероводорода и тя-желых углеводородов) при размещении скважин должно учитываться и их содержание по площади, чтобы обеспечить газохимический комплекс сырьем заданного состава, При помощи площадной модели Астраханского место-рождения был рассмотрен вопрос о распространении зоны дренирования и влиянии площадных перетоков из пойменной и охранных зон.
На рис. 2.2 и 2.3 приведены расчетная карта изобар на 4-й год разра-ботки и профили давления на различные даты.
ВВЕДЕНИЕ
Современный этап развития мировой энергетики обуславливает бурное развитие газовой промышленности в большинстве промышленно развитых странах мира. Совместная доля нефти и природного газа в мировом произ-водстве энергоресурсов составляет почти 65 %. В Российской Федерации эта доля превышает 80 %, из которых 49 % приходится на природный газ. Роль газа, как наиболее экологически чистого вида топлива заметно возрастает и его доля в энергобалансе мира к середине XXI века может составить 30 %.
Для России, имеющей 33 % разведанных запасов и более 40 % про-гнозных ресурсов газа, природный газ является не только эффективным энергоносителем, а так же важнейшим средством решения сложных социаль-ных и экономических проблем, имеющим первостепенное значение для по-вышения в целом уровня жизни населения. Экспорт газа позволяет покры-вать острую необходимость валютных поступлений в бюджет страны, явля-ется гарантом финансовой стабилизации и подтверждением платёжеспособ-ности перед иностранными кредиторами. Валютные поступления от газовой промышленности обеспечивают социальные затраты общества, прежде всего на медицину, образование, искусство и науку. Сооружение новых газотранс-портных систем и реконструкция действующих обеспечивает заказами отече-ственные предприятия, привлекает инвестиции и создаёт новые рабочие ме-ста. Трудно переоценить значение газификации малых городов, посёлков и сёл, а так же связанный с этим вклад газовой промышленности России в со-хранение многоукладности экономики и национальную безопасность страны в целом.
Первостепенное значение для развития топливно-энергетической от-расли России имеет освоение, ввод и рациональная эксплуатация крупней-ших в мире по запасам углеводородного сырья месторождений Западной Сибири. Основу успешного развития топливной индустрии составляют до-стижения научно-технического прогресса в области физики пласта, внедре-ние современной техники и технологии добычи нефти и газа, совершенство-вание проектных систем разработки и эксплуатации нефтяных и газовых ме-сторождений, разработка и внедрение методов увеличения компонентоотда-чи пластов.
В настоящее время огромное внимание предприятиями газодобываю-щей промышленности уделяется вопросам качественного исследования сква-жин и пластов. Методы исследования скважин и пластов предназначены для получения информации об объекте разработки, об условиях и интенсивности притока флюидов в скважину, об изменениях, происходящих в пласте в про-цессе его разработки. Такая информация необходима для организации пра-вильных, экономически оправданных процессов добычи нефти, для осу-ществления рациональных способов разработки месторождения, для обос-нования способа добычи нефти, выбора оборудования для подъема жидко-сти из скважины, для установления наиболее экономичного режима работы этого оборудования при достижении наиболее высокого коэффициента неф-теотдачи.
В процессе выработки запасов нефти условия в нефтяной залежи и в скважине изменяются. Скважины обводняются, пластовое давление снижает-ся, газовый фактор изменяется. Это заставляет постоянно получать и непре-рывно обновлять информацию о скважинах и о пласте. От наличия такой до-стоверной информации зависит правильность принимаемых решений по осуществлению на скважинах или на пласте тех или иных геолого-технических мероприятий, направленных на повышение отбора нефти.
После того, как установлены промышленные запасы нефти или газа и принято решение о вводе залежи в промышленную эксплуатацию, присту-пают к составлению технологической схемы или проекта разработки залежи. Для этой цели, кроме той информации, которая уже имеется и использована в подсчете запасов, необходим комплекс данных об изменении гидродинами-ческих характеристик пласта по площади залежи и в законтурной области, о продуктивности пласта в целом и отдельных его интервалов в различных ча-стях залежи, об эффективности применяемых способов вскрытия пласта и перфорации скважин, об условиях работы скважин и др.
В процессе промышленной эксплуатации скважин их исследуют глав-ным образом с целью уточнения гидродинамических характеристик пластов, выявления действительной технологической эффективности отдельных эле-ментов принятой системы разработки (система поддержания пластового дав-ления, схема расположения скважин, принятый способ вскрытия пластов, способ эксплуатации скважин и др.) и определения эффективности проводи-мых мероприятий по повышению или восстановлению производительности добывающих скважин.
При исследовании газовых скважин широко применяют различные ме-тоды определения газоконденсатности залежей с помощью передвижных установок, снабженных специальными сепараторами. Цель исследования – определение количества сырого конденсата, выделяющегося в процессе се-парации газа при различных давлениях и температурах, количества твердых примесей и жидкой фазы, выделяющейся на забое и по стволу скважины в результате снижения давления и температуры от пластовых условий до зна-чений, при которых газ поступает на устье скважины и др.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Состояние разработки месторождения
Расположение добывающих скважин в центральной части залежи после 25 лет разработки не привело к образованию застойных зон на ее крыльевых участках. Характер распределения пластового давления свидетельствует о довольно неплохой газодинамической связи по площади и позволяет рас-сматривать процесс разработки залежи как единой газодинамической систе-мы.
Давление в призабойных зонах большинства скважин выше давления начала конденсации. В то же время в зонах депрессионных воронок УППГ-1 и УППГ-2 по ряду скважин забойные давления достигли давления начала конденсации 36,0-40,0 МПа, однако конденсато-газовый фактор (КГФ) по насыщенному конденсату за время эксплуатации не изменился и составил 350,0 г/м'\ потерь конденсата отмечено не было.
По результатам газоконденсатных исследований установлена средняя концентрация основных компонентов пластового газа: сероводорода - 25-30%, углекислого газа - 13-18%, метана и этана - 53,68%, среднее потенци-альное содержание конденсата - 262,76 г/м3.
Обводненность добываемой продукции установлена по результатам га-зогидродинамических исследований скважин. В 2008 году в 41 скважине установлено наличие подошвенной воды в их продукции.
Технологический режим работы скважин устанавливается ежеквар-тально по результатам их исследований. Методика установления технологи-ческого режима включает ряд расчетных методов, основанных на замере устьевых параметров скважин.
Результаты расчетов и исследований сводятся к графическому пред-ставлению -графику в координатах «устьевое давление - дебит газа сепара-ции», позволяющему определить область работы скважины, т.е. устанавли-ваются ограничения на параметры технологического режима и выбирается оптимальный технологический режим конкретно для каждой скважины.
Для условий АГКМ ограничения параметров технологического режи-ма следующие: забойное давление должно быть выше давления начала кон-денсации во избежание выпадения конденсата в призабойной зоне пласта;
- полный вынос жидкости с забоя скважин. Выполнение данного усло-вия определяется величиной скорости потока флюида у башмака насосно-компрессорных труб (НКТ) выше критической, при этом скорость потока определяется дебитом, давлением на забое и проходным сечением НКТ и должна быть выше критической скорости;
-срыв пленки ингибитора на внутренней поверхности НКТ при превы-шении скорости восходящего потока свыше 10 м/с, который приводит к ухудшению защиты оборудования от воздействия агрессивных компонентов.
Для скважин с наличием подошвенной воды в их продукции устанав-ливается минимально возможный дебит, обеспечивающий вынос выпавшей на забое жидкости. Режимы работы скважин устанавливаются с учетом вы-шеперечисленных ограничений и результатов их исследований на контроль-ном сепараторе.
Режим работы залежи - газовый, контроль за данным режимом осу-ществляется путем наблюдения за изменением таких характеристик залежи как: положение газоводяного контакта (ГВК), обводненность продукции скважин, изменение состава добываемой смеси, динамика пластового давле-ния. С использованием промысловых данных также строится и анализирует-ся зависимость приведенного пластового давления от накопленчой добычи пластовой смеси. Все вышеупомянутые параметры сопоставляются, анализи-руются, а затем выдается заключение о режиме работы залежи на данном этапе ее разработки.
Обводнение добываемой продукции АГКМ можно также объяснить геофлюидо-динамическими процессами на разрабатываемом участке, в ре-зультате которых вода из плотного низкопорового коллектора отжимается в продуктивную часть коллектора по мере снижения пластового давления.
Анализ зависимостей приведенного пластового давления от накоплен-ной добычи пластовой смеси, неизменное первоначальное положение ГВК, низк'ое значение обводненности добываемой смеси подтверждает предполо-жение о существовании в залежи первоначального газового режима.
Перспективы развития Астраханского газового комплекса связаны с увеличением добычи природного газа за счет ввода в эксплуатацию восточ-ных участков, расположенных в 25-30 км от основной зоны. При этом пред-полагается, что основной объем выделенных на промысле кислых компонен-тов - сероводорода и углекислого газа - будет закачан в выработанные пла-сты на зоне действия УППГ-1 и УППГ-2, что позволит не создавать установ-ки по производству серы. Добытый нестабильный конденсат направляется на Астраханский газоперерабатывающий завод - для обеспечения его загрузки после реконструкции.
Таким образом, перспективы развития Астраханского газоконденсат-ного комплекса напрямую зависят от утилизации кислых компонентов пла-стового газа, утилизации попутных вод и ограничений по экологической нагрузке.
Основной продуктивной тощей на Астраханском газоконденсатном ме-сторождении являются среднекаменноугольные карбонатные отложения башкирского яруса. Промышленная их газоносность установлена в скв. №1 Аксарайской, скв.5, 8, 25, 26, 32 Астраханских. Максимальные дебиты газа до 1023,8 тыс. м3/сут через 28 мм диафрагму были получены из интервала 3936-3915 м скв №8 Астраханской. ГВК отбивается на абсолютных отметках минус 4073 м. состав газа: углеводород - 60,4% , сероводород -20,7%, угле-кислый газ - 17,9%. Начальный конденсатный фактор составляет 240-560 см3/м3.
Начальное пластовое давление в интервале 4100-3990 м скв №5 Астра-ханская равнялось 61,74 МПа, пластовая температура в скв. №3 Заволжская на глубине 4200 м составляла 1100С.
Протоколом ГКЗ по запасам при Совете Министров СССР №9023 от 28 июня1982 г. утверждены балансовые запасы газа и компонентов Астра-ханского ГКМ по категориям С1 и С2 левобережной и по категории С2 в правобережной частях месторождения. Решено считать развернутым до ка-тегории С1 часть Астраханского месторождения подготовленной к опытно-промышленной разработке.
В скв. №1 Аксарайской из кровли известняков башкирского яруса в инетрвале 3981-2994 м во время подъема инструмента был получен приток газа с дебитом ориентировано 500 тыс. м3/сут.
Газ имел следующий состав: метан - 58,18%,этан - 7,38%, пропан - 1,10%, бутан - 0, 64%,азот - 4, 05%, углекислый газ - 13, 18%, сероводород - 15,47%.
В скв. №5 Ширяевской, расположенной в 5 км восточнее скв №1 Акса-райской, при опробовании известняков башкирского яруса в интервале 4100-4070 м., получен промышленный приток газа с конденсатором. Дебит газа на 13, 7мм штуцере составил 339 тыс. /сут., а абсолютно свободный де-бит равен 838 тыс. /сут. Состав газа: метан -58, 86%, этан -1, 88%, пропан-0, 60%, азот-0, 91%, углекислый газ-11, 00%, сероводород-26, 6%. Относи-тельный удельный вес-0, 8552.
Астраханское газоконденсатное месторождение приурочено к цен-тральной, наиболее приподнятой части Астраханского свода. Продуктивны здесь подсолевые карбонатные отложения башкирского яруса, залегающие на глубинах 3900-4100 м. Залежь массивного типа, для нее характерны АВПД (63 МПа). Дебиты газа достигают 720 тыс. м3/сут при 15-мм штуцере, содержание стабильного конденсата составляет от 240 до 570 см3/м3, плот-ность его 0,81 г/см3. Газ имеет уникальный состав (%): в нем присутствует 50-55 УВ (в том числе 46- 53 метана), 23 сероводорода, 20 углекислого газа, до 2 азота.
При выявлении особенностей формирования месторождения анализи-ровались литолого-фациальные и геохимические условия разреза с целью выделения нефтегазоматеринских толщ (НГМТ) и проводились палеотекто-нические реконструкции, позволяющие проследить динамику процессов нефтегазообразования и нефтегазонакопления во времени и в пространстве. Через Астраханский свод и смежный с ним Сарпинский прогиб были постро-ены современный геологический профиль и палеопрофили к началу кунгур-ского и юрского времени. Проведенные по физическим константам расчеты палеотемператур этапов позволили исходя из современных представлений о стадийности процессов нефтегазогенерации с развитием главных фаз нефте- и газообразования определить время вхождения НГМТ в зоны максимального проявления этих процессов, длительность пребывания в этих зонах и время выхода из них.
Месторождения сложного состава, освоение и эксплуатация которых возможны только на основе создания газохимических комплексов, содержат в своем составе помимо метана значительные количества более тяжелых уг-леводородов, включая конденсат, сероводород, углекислый газ, азот, мер-каптаны, гелий, а также целый ряд микрокомпонентов.
Астраханское месторождение (АГКМ) — первое в нашей стране место-рождение, в котором объемное содержание метана около 50 %, а кислых компонентов — более 40 %. Пластовая смесь представляет собой недонасы-щенную газоконденсатную систему. Давление начала конденсации 38— 40 МПа. Среднее содержание конденсата 260 г/м3, пластовая температура 110 0С.
Основные проблемы разработки Астраханского месторождения связа-ны с большой глубиной залегания (более 4000 м), аномально высоким пла-стовым давлением (около 63 МПа), неупрутим характером деформирования пласта- коллектора, сложным составом природного газа, содержащего зна-чительное количество неуглеводородных коррозионноактивных компонен-тов (до 25% H2S и 16% СО2), повышенным содержанием конденсата (260 г/м3).
Отечественная газовая промышленность сталкивается впервые с таким типом высокосернистого месторождения, приуроченного к низкопроницае-мым коллекторам.
Проблема переработки высокосернистого газа усложняется наличием в газе высокой концентрации СО2, сероорганических соединений (меркаптаны, COS, CS2, и т.д.), тяжелых углеводородов.
Особого внимания требуют низкопроницаемые коллекторы АГКМ, для которых необходимо разрабатывать новые физико-химические методы воз-действия на призабойную зону и пласт в целом. Следует отметить, что на первом этапе карбонатный коллектор АГКМ достаточно хорошо реагирует на массированные спиртокислотные обработки, позволяющие снизить рабо-чие депрессии на пласт.
Эксплуатация АГКМ проходит в осложненных условиях, обусловлен-ных низкой продуктивностью коллекторов, высокими депрессиями на пласт, повышенной коррозионной агрессивностью и токсичностью газа, гидрато-образованием, выпадением конденсата в пласте, возможным сероотложением в пласте и коммуникациях.
Значительная часть месторождения приурочена к пойменной зоне и, по-видимому, не будет разбуриваться длительное время,
Требует обоснования способ разработки АГКМ, так как при разработ-ке на истощение коэффициент газоотдачи оценивается в 0,5 — 0,6. В связи с этим могут возникнуть новые крупномасштабные задачи по поддержанию пластового давления в слабопроницаемых деформируемых коллекторах за счет обратной закачки сухого газа и СО2.
При разработке месторождения на истощение после снижения давления в залежи ниже давления начала конденсации рабочие дебиты скважин могут резко снизиться из-за "запирающего" эффекта, связанного с выпадением кон-денсата в призабойной зоне. Кроме того, снижение давления может привести к уменьшению дебитов из-за необратимых деформаций пласта, и поэтому основной эффект от поддержания давления связан с экономией значительно-го числа скважин благодаря замедлению темпов снижения рабочих дебитов.
Поддержанию рабочих дебитов, а также повышению газо- и конденса-тоотдачи могут способствовать и циклические закачки СО2 в призабойную зону скважин.
Таким образом, специфика АГКМ потребовала новых систем размеще-ния скважин, совершенствования технологии бурения, добычи, промысловой подготовки, переработки газа и конденсата, новых решений по защите обо-рудования от коррозии и охране окружающей среды.
Астраханское месторождение служит сырьевой базой газохимического комплекса с периодом стабильных поставок сырья не менее 25-30 лет.
Газодинамическая модель АГКМ включает процесс двумерной филь-трации пластовой смеси в деформируемой пористой среде, уравнение состо-яния газа, зависимости изменения пористости, проницаемости и вязкости от давления.
Первичная модель разработки АГКМ была принята в виде прямо-угольника. Границы уточненной модели показаны на рис. 2.1.
Рис. 2.1. Расчетная геометрическая модель AГКM.
Модель разделена на девять зон в соответствии с числом УППГ, вво-димых в эксплуатацию, Запасы газа приняты по объекту I (прикамский и се-веро-кельтменский горизонты); объект II (краснополянский горизонт) счи-тался непромышленным. Начальные термобарические условия залежи: тем-пература 106 0С, давление 62,4 МПа. Пористость принята постоянной и рав-ной 0,097.
Карта проницаемости подготовлена по результатам обработки иссле-дований разведочных и добывающих скважин.
Проницаемость призабойной зоны принималась с учетом СКО (увели-чение дебитов на 50%); для перехода к характеристике пласта проницаемость призабойной зоны уменьшалась в 1,5 раза.
В процессе разработки месторождения вводилось дополнительное ограничение — при снижении текущего пластовоro давления ниже 46 МПа депрессия на пласт снижалась с 15 до 12 МПа с целью отодвинуть начало ре-троградной конденсации в пласте и сроки ввода ДКС.
Начальный расчетный состав пластовой смеси был принят постоянным по площади и соответствовал данным геохимических исследований по разве-дочным скважинам. Начальное содержание конденсата 260 г/м3 газа сепара-ции. Давление начала конденсации 40 МПа. Расчет добычи конденсата про-водили по каждой скважине, так как определение его добычи по "средней" скважине неправомерно после того, как среднее давление начнет прибли-жаться к давлению начала конденсации.
Проектные добывающие скважины размещались в левобережной части месторождения с учетом охранных зон. Режим работы залежи — газовый.
Дебит скважин. Для условий АГКМ дебит — один из наиболее трудно прогнозируемых параметров. Это связано, во-первых, с недостаточной ин-формацией о продуктивности пласта по площади залежи на первом этапе проектирования, во-вторых, эксплуатация глубокозалегающих месторожде-ний природного газа на истощение сопровождается изменением во времени и по объему таких параметров, как пористость и проницаемость, вязкость и сверхсжимаемость газа, что необходимо учитывать при прогнозировании показателей раз- работки, причем вязкость и сверхсжимаемость существенно зависят от компонентного состава газа.
Кроме этого, для метана характерно снижение дебита для любого рас-смотренного типа коллектора. В то же время для смеси характер изменения дебита существенно зависит от степени сжимаемости породы.
В зависимости от степени деформируемости горных пород при сниже-нии пластового давления дебит скважин может изменяться в широких преде-лах. В условиях упругопластичных и пластичных деформаций дебит сква-жин резко снижается. В слабосжимаемых и несжимаемых коллекторах деби-ты скважин, дренирующих залежи со сложным составом газа, могут при по-стоянной депрессии на пласт даже возрастать в течение определенного вре-мени. Это объясняется изменением физических свойств природного газа – снижением вязкости и изменением коэффициента z.
Глубокие депрессионные воронки, характерные для низкопроницае-мых коллекторов, могут резко понижать добывные возможности скважин из-за быстрого снижения пластового давления (особенно в первый период), вы-падения конденсата в пласте и возможного "запирающего" эффекта, упруго-пластичных деформаций коллектора, Поэтому один из главных принципов размещения скважин — максимальное и скорейшее использование зоны экс-плуатационного разбуривания с тем, чтобы добиться быстрого выявления участков с наиболее высокой продуктивностью, минимального снижения пластового давления по площади, использования площадных перетоков газа из охранных, пойменной и периферийных зон.
Предложенная система размещения скважин учитывает также возмож-ность перехода к частичному поддержанию пластового давления.
Для Астраханского месторождения с некоторой дифференциацией рас-пределения основных составляющих пластового сырья (сероводорода и тя-желых углеводородов) при размещении скважин должно учитываться и их содержание по площади, чтобы обеспечить газохимический комплекс сырьем заданного состава, При помощи площадной модели Астраханского место-рождения был рассмотрен вопрос о распространении зоны дренирования и влиянии площадных перетоков из пойменной и охранных зон.
На рис. 2.2 и 2.3 приведены расчетная карта изобар на 4-й год разра-ботки и профили давления на различные даты.
Дополнительная информация
5.2 Выводы и предложения
Экономическая эффективность внедрения мероприятий научно – тех-нического прогресса определяется как превышение стоимости оценки ре-зультатов над затратами по внедрению данного мероприятия.
В результате применения технологии по борьбе с коррозией произо-шло увеличение дебита скважины на 90 тыс. м3.Рост дебита скважины при-вел к повышению объема добычи газа на 31184 тыс. м3.
Увеличение объема добычи газа привело к экономии себестоимости 1000 м3 на 308,2 руб.
Экономия затрат на добычу газа позволила получить условно – годо-вую экономию от применения технологии очистки газа от сероводорода в сумме 15,1 млн. руб. Фактическая сумма прибыли составила 48,3 млн. руб. и превысила сумму прибыли получаемую до внедрения мероприятия на 36,28 млн. руб.
На основании вышеизложенного, можно сделать вывод о экономиче-ской целесообразности применения технологии по борьбе с коррозией
ЗАКЛЮЧЕНИЕ
Проектами разработки газовых месторождений предусмотрено еже-годное исследование каждой скважины при стационарных режимах филь-трации. Такой большой объем работ, включающий около 600 исследований в год, выполняется для получения характеристик продуктивного пласта и информации о техническом состоянии скважин, которые в дальнейшем ис-пользуется при решении задач управления процессами разработки залежей. Исследования скважин проводятся в основном, методом установившихся от-боров и во многих случаях сопровождаются выпуском газа в атмосферу, что обусловлено отсутствием в обвязке скважин узлов замера расхода газа.
Существенно снизить трудоемкость работ и выпуск газа в атмосферу позволяют стандартные методы, основанные на нестационарных режимах фильтрации газа. Однако применение этих методов исследований на место-рождениях, приуроченных к пластам с высокими коллекторскими свойства-ми, в частности пласт ПК1-сеноман, сопряжено с определенными трудностя-ми, вызванными быстрым протеканием нестационарных процессов в кол-лекторах сеноманской залежи и отсутствием соответствующей измеритель-ной аппаратуры.
Для повышения эффективности газодинамических исследований раз-работана и внедрена новая технология, основанная на использовании мето-дов нестационарной фильтрации газа и программно – технического комплек-са для сбора и обработки информации. Исследования проводят на 2 режи-мах работы скважины продолжительностью 10-15 минут. Весь массив дан-ных, которые непрерывно поступают с датчиков и регистрируются про-граммно-техническим комплексом, обрабатывают методом, использующим так называемую «функцию влияния» для определения продуктивных харак-теристик скважины по параметрам работы скважины при нестационарных режимах фильтрации. Предлагаемая технология увеличивает достоверность и объем получаемой информации при сокращении продолжительности работ и уменьшении выпуска газа в атмосферу. Основным отличием предлагаемой технологии является возможность определить по параметрам работы на не-стационарных режимах фильтрации продуктивные характеристики скважи-ны, получаемые обычно методами стационарной фильтрации.
Газодинамические исследования скважин газовых месторождений с использованием функции влияния показали преимущества нового метода при определении параметров, характеризующих продуктивность эксплуата-ционных скважин. Продолжительность исследований сокращена в 3-5 раз, а выпуск газа в атмосферу в 5-7 раз, по сравнению с методом установившихся отборов.
Экономическая эффективность внедрения мероприятий научно – тех-нического прогресса определяется как превышение стоимости оценки ре-зультатов над затратами по внедрению данного мероприятия.
В результате применения технологии по борьбе с коррозией произо-шло увеличение дебита скважины на 90 тыс. м3.Рост дебита скважины при-вел к повышению объема добычи газа на 31184 тыс. м3.
Увеличение объема добычи газа привело к экономии себестоимости 1000 м3 на 308,2 руб.
Экономия затрат на добычу газа позволила получить условно – годо-вую экономию от применения технологии очистки газа от сероводорода в сумме 15,1 млн. руб. Фактическая сумма прибыли составила 48,3 млн. руб. и превысила сумму прибыли получаемую до внедрения мероприятия на 36,28 млн. руб.
На основании вышеизложенного, можно сделать вывод о экономиче-ской целесообразности применения технологии по борьбе с коррозией
ЗАКЛЮЧЕНИЕ
Проектами разработки газовых месторождений предусмотрено еже-годное исследование каждой скважины при стационарных режимах филь-трации. Такой большой объем работ, включающий около 600 исследований в год, выполняется для получения характеристик продуктивного пласта и информации о техническом состоянии скважин, которые в дальнейшем ис-пользуется при решении задач управления процессами разработки залежей. Исследования скважин проводятся в основном, методом установившихся от-боров и во многих случаях сопровождаются выпуском газа в атмосферу, что обусловлено отсутствием в обвязке скважин узлов замера расхода газа.
Существенно снизить трудоемкость работ и выпуск газа в атмосферу позволяют стандартные методы, основанные на нестационарных режимах фильтрации газа. Однако применение этих методов исследований на место-рождениях, приуроченных к пластам с высокими коллекторскими свойства-ми, в частности пласт ПК1-сеноман, сопряжено с определенными трудностя-ми, вызванными быстрым протеканием нестационарных процессов в кол-лекторах сеноманской залежи и отсутствием соответствующей измеритель-ной аппаратуры.
Для повышения эффективности газодинамических исследований раз-работана и внедрена новая технология, основанная на использовании мето-дов нестационарной фильтрации газа и программно – технического комплек-са для сбора и обработки информации. Исследования проводят на 2 режи-мах работы скважины продолжительностью 10-15 минут. Весь массив дан-ных, которые непрерывно поступают с датчиков и регистрируются про-граммно-техническим комплексом, обрабатывают методом, использующим так называемую «функцию влияния» для определения продуктивных харак-теристик скважины по параметрам работы скважины при нестационарных режимах фильтрации. Предлагаемая технология увеличивает достоверность и объем получаемой информации при сокращении продолжительности работ и уменьшении выпуска газа в атмосферу. Основным отличием предлагаемой технологии является возможность определить по параметрам работы на не-стационарных режимах фильтрации продуктивные характеристики скважи-ны, получаемые обычно методами стационарной фильтрации.
Газодинамические исследования скважин газовых месторождений с использованием функции влияния показали преимущества нового метода при определении параметров, характеризующих продуктивность эксплуата-ционных скважин. Продолжительность исследований сокращена в 3-5 раз, а выпуск газа в атмосферу в 5-7 раз, по сравнению с методом установившихся отборов.
Похожие материалы
Дипломные работы-Список тем Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело
https://vk.com/aleksey.nakonechnyy27
: 4 декабря 2024
Дипломные работы-Список тем Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело
Проектирование, сооружение и эксплуатация систем трубопроводного транспорта), оборудованию для бурения нефтяных и газовых скважин, оборудованию для добычи нефти и газа, оборудованию нефтегазопереработки и специализированной нефтегазовой техники. А также владею базой готовых Курсовых работ по спец. предметам и Дипломных работ по специальности: Машины и оборудование нефтяных и газовых про
Работа групповой замерной установки куста № 161 добывающих нефтяных скважин Ватинского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслужива
lesha.nakonechnyy.92@mail.ru
: 16 ноября 2017
Работа групповой замерной установки куста № 161
добывающих нефтяных скважин Ватинского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
1.Введение
1.1 Значение измерения продукции скважин.
Измерение продукции отдельных скважин являются важнейшим фактором при анализе разработки нефтяных месторождений и необходимы для уста- новления оптима
1626 руб.
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lelya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект исполнен на 132 страницах, использовано 24 таблицы, 17 рисунков, использованных источников - 15.
Кратко охарактеризована геологическая характеристика Кезского месторождения Удмуртской Республики. Произведен ана
1626 руб.
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy_lelya@mail.ru
: 10 ноября 2017
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
На начальном этапе разработки нефтяных месторождений, как прави-ло, добыча нефти происходит из фонтанирующих скважин практически без примеси воды. Однако на каждом месторождении наступает такой период, когда из пласта в
1626 руб.
Нефтекислотный разрыв пласта на Арланском месторождении -Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lenya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Нефтекислотный разрыв пласта на Арланском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект содержит страниц текста, в том числе таблицы и рисунков.
СКВАЖИНА, СИСТЕМА ЗАВОДНЕНИЯ, ИНТЕНСИФИКАЦИЯ, ДОБЫЧА, НЕФТЕОТДАЧА, ВОДОНАСЫЩЕННОСТЬ, ПРИЗАБОЙНАЯ ЗОНА
В данной работе приведена геологическ
1626 руб.
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
В настоящее время в нефтяной промышленности для повышения неф-теотдачи пластов используются мероприятия по поддержанию пластового давления (ППД). В мировой практике наиболее широкое распространение получил метод, основанный на закачивании в пласт воды через на
1626 руб.
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Скважинная плазменно-импульсная электрогидравлическая технология повышения нефтеотдачи пластов месторождений углеводородов, основана на создании резонансных явлениях в продуктивных пластах.
Особенно сложная задача стоит в пр
1626 руб.
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
История возникновения резервуаров в России связана с развитием Ба-кинской нефтяной промышленности. В 17 в. с увеличением добычи нефти в Баку начали возникать нефтяные склады — земляные резервуары (ямы) в глиняных грунтах. Первый стальной клепаный ре
1626 руб.
Другие работы
Лабораторной работе №3. по дисциплине Алгоритмы и структуры данных. Тема Рекурсивные алгоритмы.
DiKey
: 28 марта 2023
Лабораторной работе №3. по дисциплине Алгоритмы и структуры данных. Тема Рекурсивные алгоритмы.
Теоретическая часть
Обход дерева - вид обхода графа, обусловливающий процесс посещения каждого узла структуры дерева данных ровно один раз. Такие обходы классифицируются по порядку, в котором узлы посещаются. Алгоритмы относятся к двоичным деревьям, но могут быть обобщены и для других деревьев.
В отличие от связных списков, одномерных массивов и других линейных структур данных, которые канонически
100 руб.
Опора. Вариант 5а
lepris
: 21 октября 2022
Опора. Вариант 5а
Сложные разрезы. Упражнение 45
Перечертить два вида деталей. Выполнить указанный разрез. Проставить размеры.
Чертеж и 3д модель выполнены в AutoCAD 2013 (все на скриншотах показано) возможно открыть с 2013 по 2022 и выше версиях.
Также открывать и просматривать чертежи и 3D-модели, выполненные в AutoCAD-е можно просмоторщиком DWG TrueView 2022.
Помогу с другими вариантами.Пишите в Л/С.
125 руб.
Защита информации. Лабораторная работа №2. Все варианты
rt
: 26 февраля 2016
Лабораторная работа №2
Тема: Теоретическая стойкость криптосистем (Глава 3)
Задание:
Пусть источник без памяти порождает буквы из алфавита {0, 1, 2, ..., 9} с вероятностями 0.4, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.04, 0.03, 0.03 соответственно. Пусть используется шифр Цезаря
e = (m + k) mod 10
с ключом k, выбираемым равновероятно из этого же алфавита.
Написать программу, которая
1) вычисляет расстояние единственности для этого шифра;
2) для введенного зашифрованного сообщения (например,
40 руб.
Денежное обращение и денежная система
Elfa254
: 24 октября 2013
Денежный оборот. Деньги находятся в постоянном движении между экономическими агентами, к которым относятся домашнее хозяйство (отдельные лица и семьи), фирмы (нефинансовые и финансовые), некоммерческие объединения (например, общественные), государство (органы госуправления, государственные учреждения и организации). В России насчитывалось в 2003 г. около 60 млн домашних хозяйств, более 3 млн фирм, 0,2 млн некоммерческих организаций и 0,4 млн госучреждений и организаций.
Движение денег во внутрен
10 руб.