Дискретная математика. Лабораторная работа №5
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Тема: Поиск компонент связности графа
Задание
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы №2.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Задание
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы №2.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 5
Оценка:Зачет
Дата оценки: 25.10.2017
Бах Ольга Анатольевна
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 5
Оценка:Зачет
Дата оценки: 25.10.2017
Бах Ольга Анатольевна
Похожие материалы
Дискретная математика. Лабораторная работа №5
Bodibilder
: 14 марта 2019
Лабораторная работа 5
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предо
15 руб.
Лабораторная работа №5 по дискретной математике
puzirki
: 25 декабря 2013
Лабораторная работа № 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предо
400 руб.
Дискретная математика. Лабораторная работа №5
GTV8
: 10 сентября 2012
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е
250 руб.
Лабораторная работа № 5 по дискретной математике
migsvet
: 7 апреля 2012
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность ред
100 руб.
Дискретная математика Лабораторная работа № 5
1231233
: 17 сентября 2010
Тема: Поиск компонент связности графа
Задание:
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
23 руб.
Лабораторная работа № 5 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа № 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пр
48 руб.
Дискретная математика. Лабораторная работа №5. Все варианты
Багдат
: 19 февраля 2016
Лабораторная работа № 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пр
33 руб.
Лабораторная работа № 5 по дискретной математике (СибГУТИ)
Lost
: 28 февраля 2012
При выполнении лабораторных работ необходимо предусматривать обработку возможных ошибок ввода. Программа не должна “зависать” или вести себя иным некорректным образом ни при каких начальных данных!
При вводе неправильных начальных данных должно быть выведено сообщение об ошибке пользователя и предложено повторить ввод правильно.
Поиск компонент связности графа.
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и
Другие работы
Механика жидкости и газа СПбГАСУ 2014 Задача 12 Вариант 55
Z24
: 2 января 2026
Вычислить дебит артезианской скважины при условии, что мощность водоносного пласта t = (15 + 0,5·y) м; диаметр скважины d = (30 + 0,5·z) см; глубина откачки S = (6 + 1·y) = 10 м; радиус влияния R = (150 + 10·z) м; коэффициент фильтрации k = (10 + 1·y) м/сут (рис. 12).
120 руб.
Расчет ректификационной установки. ПАХТ. Этиловый спирт - вода
janeairas
: 1 февраля 2018
Задание
Спроектировать ректификационную установку непрерывного действия для разделения смеси этиловый спирт - вода
Исходные данные:
1. Производительность установки G(D)= 0,7 кг/с
2. Состав исходной смеси x(F) = 28 %мольн
3. Состав дистиллята по низкокипящему компоненту x(D) =75%мольн
4. Состав остатка по низкокипящему компоненту x(W) = 5%мольн
5. давление в колонне атмосферное
6. Тип колонны: с ситчатыми тарелками
Объем задания:
1. Схема установки
2. Расчёт ректификационной колонны
3. Расчет под
1500 руб.
Экзамен по дисциплине:Теория вероятностей и математическая статистика. Билет № 7.
Alexbur1971
: 8 ноября 2020
Дисциплина «Теория вероятностей и МС»
Билет № 7
1. Математическое ожидание случайной величины , дисперсия и среднее квадратическое отклонение и их свойства. Моменты распределения и другие числовые характеристики одномерной случайной величины
2. Из урны, где находятся 2белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 4 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х 0 1 2 3 10
р 0,12 0,15 0,10 0,11 а
Найти вел
500 руб.
Корпус в сборе. Задание 26
lepris
: 14 июня 2022
Корпус в сборе. Задание 26
Сборочная единица "Корпус в сборе" содержит три детали. Корпус 3 устанавливается между крышкой 1 и фланцем 2 и зажимается четвыремя шпильками 6 (М8х105 ГОСТ 22032-76) с шайбами 5 (8 ГОСТ 11371-78) и гайками 4 (М8 ГОСТ 5915-70).
Требуется:
а) Выполнить сборочный чертеж узла на формате А3 в масштабе 1:1.
Чертеж должен содержать главный вид со сложным ломаным разрезом (см. чертеж крышки) и вид слева.
б) Составить спецификацию сборочной единицы.
в) выполнить 3d модель с
250 руб.