Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №3

Состав работы

material.view.file_icon 09386818-DFEA-4F66-A78F-BCFE9EB3FC87.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет No3
1. С помощью алгоритма Дейкстры найти кратчайшие расстоя-ния от вершины 0
(нумерация вершин начинается с 0) до всех остальных вершин связного
взвешенного неориентированного гра-фа, имеющего 6 вершин.
Граф задан матрицей смежности, (0 означа-ет, что соответствующей дуги нет).
0 7 2 6 0 5
7 0 1 7 6 3
2 1 0 4 6 2
6 7 4 0 7 3
0 6 6 7 0 2
5 3 2 3 2 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[2×8],M2[8×6],M3[6×3],
M4[3×2],M5[2×7].

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Контрольная работа
Оценка:Зачет
Дата оценки: 17.10.2019
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 0 24 0 45 0 0 32 25 44 24 32 0 0 19 0 25 0 0 50 45 44 19 50 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User Багдат : 21 января 2018
89 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 0 24 0 45 0 0 32 25 44 24 32 0 0 19 0 25 0 0 50 45 44 19 50 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User growlist : 18 мая 2017
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3 promo
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3.
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User SibGUTI2 : 20 мая 2016
150 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
User uliya5 : 14 апреля 2024
300 руб.
Курсовая работа по дисциплине «Алгоритмы и вычислительные методы оптимизации». Вариант №1
Тема: «Решение задачи линейного программирования, теория двойственности» Задание на курсовую работу 1. Перейти к канонической форме задачи линейного программирования. 2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. 3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1. 4. Составить двойственную
User boeobq : 28 ноября 2021
450 руб.
Курсовая работа по дисциплине «Алгоритмы и вычислительные методы оптимизации». Вариант №1
Метрология стандартизация и сертификация. Вариант №7
Контрольная работа, вариант №7 Задача № 1 Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения. Задача № 2 При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн Задача №3 На рисунке
User GTV8 : 1 октября 2012
500 руб.
Трудова зайнятість студентів: соціологічний аналіз
ЗМІСТ ВСТУП……………………………………………………………………………6 РОЗДІЛ 1 ТЕОРЕТИКО-МЕТОДОЛОГІЧНІ ЗАСАДИ ВИВЧЕННЯ ТРУДОВОЇ ЗАЙНЯТОСТІ СТУДЕНТІВ……………………………………9 1.1 Трудова зайнятість як соціально-економічне явище………………………9 1.2 Студентська молодь як особлива соціальна група………………………..15 1.3 Особливості становища молоді на ринку праці…………………………...19 1.4 Феномен трудової зайнятості студентства…………………………………25 РОЗДІЛ 2 ТРУДОВА ЗАЙНЯТІСТЬ СТУДЕНТІВ В УМОВАХ СУЧАСНОЇ УКРАЇНИ (2000-2015 р.)..……………………………………..29 2.1 Стан тр
User SerFACE : 1 июля 2015
1000 руб.
Зачетная работа химия радиоматериалов.Билет №16
Зачетная работа по химии радиоматериалов. Билет №16 Вопрос: Может ли произойти пробой вакуума? Почему? Развернутый ответ на вопрос, где описаны две версии возникновения пробоя со схемой для исследования в виде рисунка.
User evanarty : 28 апреля 2013
70 руб.
up Наверх