Теория вероятностей и математическая статистика. Экзамен. Билет №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
Дополнительная информация
Оценка отлично
Похожие материалы
Теория вероятностей и математическая статистика. Экзамен. Билет № 4
Gila
: 17 января 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
growlist
: 11 апреля 2017
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
90 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4.
volodaiy
: 18 июня 2016
Билет № 4
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность ра
150 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика Билет №4
tindrum
: 14 ноября 2011
1. Теоремы сложения и умножения вероятностей. Условная вероятность.
2. На предприятии 3 телефона, вероятности занятости которых 0,6; 0,4; 0,5 соответственно. Какова вероятность, что хотя бы один свободен?
3. Найти ряд распределения и среднее значение числа выпадений «герба» при 3-х бросаниях монеты.
4. Плотность распределения случайного вектора имеет вид
5.Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шес
50 руб.
Теория вероятностей и математическая статистика. Билет №4
ANNA
: 18 февраля 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Пронумеруем все шары. Всего шаров 12. Исходом считаем выбор 5 любых шаров.
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непр
65 руб.
Билет №4. Теория вероятностей и математическая статистика
elina56
: 19 сентября 2015
Билет № 4
Задача 1.
Локальная и интегральная теоремы Лапласа. Формула Пуассона
Задача 2.
Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Задача 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
60 руб.
Экзамен по дисциплине: "Теория вероятности и математическая статистика". Билет №4. ДО СИБГУТИ
Ivannsk97
: 21 января 2021
Смотреть фотографии.
Вопрос 1.
Если событие А исключает событие Б, то они …
Вопрос 2.
Пусть вероятность события равна тогда вероятность противоположного события равна…
Вопрос 3.
Вычислить значение
Вопрос 4.
Карточки, на которых написано слово ШАШКА перемешали и разложили в произвольном порядке. Какова вероятность, что снова получилось слово ШАШКА?
Вопрос 5.
Формула
Вопрос 6.
Для вычисления вероятности наступления события в схеме Бернулли при большом количестве испытаний используетс
300 руб.
Теория вероятностей и математическая статистика (часть 2) Билет №4 Экзамен
АнастасияАМ
: 15 мая 2019
Билет №4.
Теоретический вопрос. Предельные теоремы в схеме Бернулли.
Практическое задание
Оцените распределение случайной величины по выборке:
Xi 5.762 1.957 -0.724 -2.150 1.823 3.261 0.218 1.001 8.150 -0.097
1)выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
2)оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
3)проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
600 руб.
Другие работы
Контрольная работа по дисциплине: Основы администрирования сетевых устройств. Вариант №3. 2021 год
SibGUTI2
: 13 сентября 2021
Методические указания к контрольной работе
по дисциплине
«Основы администрирования сетевых устройств»
Для решения поставленных задач предварительно рекомендуется изучить теоретический материал и выполнить лабораторные работы. С целью упрощения построения схем, а также проверки правильности настройки интерфейсов, рекомендуется использовать среду моделирования (Cisco Packet Tracer Student или аналогичную).
Задание:
Сформировать компьютерную сеть для 2 офисов, территориально расположенных в од
400 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Информатика. Вариант №8
IT-STUDHELP
: 9 октября 2023
Вариант №8
Контрольная работа
Задание:
Разработать программу, которая должна начать работу с диалога с пользователем: какую операцию с файлом он желает выполнить:
а) добавить запись в файл или начать запись нового файла;
б) начать обработку созданного файла;
Предусмотреть возможность выполнения данных операций многократно.
В соответствии с индивидуальным заданием, номер которого совпадает с Вашими двумя последними цифрами пароля, разработать алгоритмы и
880 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 14.1 Вариант 5
Z24
: 18 октября 2025
Определить момент Мм, развиваемый гидромотором, полезную мощность Nп и частоту вращения nм вала гидромотора, если давление насоса равно рн, перепад давления на гидромоторе Δрм, подача насоса Qн, рабочий объем гидромотора qм. Схема гидропривода представлена на рис. 14.3. Механический и объемный КПД гидромотора соответственно ηм.м = 0,9, ηм.о = 0,92. Потери напора в гидролиниях не учитывать. Плотность рабочей жидкости ρм. Площадь проходного отверстия дросселя ωдр, коэффициент расхода дросселя μдр.
150 руб.
Математические основы ЦОС. Экзамен. Билет 14
aleksei84
: 4 ноября 2014
. Z-преобразование.
Ответ:
Z-преобразованием (преобразованием Лорана) называют свёртывание исходного сигнала, заданного последовательностью вещественных чисел во временной области, в аналитическую функцию комплексной частоты. Если сигнал представляет импульсную характеристику линейной системы, то ко
49 руб.