Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1 Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→max
a_1 x_1+a_2 x_2≥a
b_1 x_1+b_2 x_2≥b
c_1 x_1+c_2 x_2≥c
x_1;x_2≥0
2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
5. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
0. 12 33 20 5 5 2 1 4 5 6 3 1,9,11,15
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1 Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→max
a_1 x_1+a_2 x_2≥a
b_1 x_1+b_2 x_2≥b
c_1 x_1+c_2 x_2≥c
x_1;x_2≥0
2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
5. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
0. 12 33 20 5 5 2 1 4 5 6 3 1,9,11,15
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 23.03.2019
Рецензия: Уважаемый
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 23.03.2019
Рецензия: Уважаемый
Галкина Марина Юрьевна
Похожие материалы
Алгоритмы и вычислительные методы оптимизации. Вариант №0
IT-STUDHELP
: 9 июля 2020
Язык программирования: Javascript
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
{█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при вып
620 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №0
IT-STUDHELP
: 9 июля 2020
Язык программирования: Python
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
{█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполне
800 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №7.
sibguter
: 27 декабря 2019
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и
139 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Михаил18
: 26 сентября 2019
Задание
1. Перейти к канонической форме задачи линейного программирования.
2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2.
4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
5. Ответить на вопросы
100 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №3.
sibguter
: 28 августа 2019
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №4.
sibguter
: 28 августа 2019
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №2.
sibguter
: 29 мая 2019
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №6.
sibguter
: 3 мая 2019
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и
139 руб.
Другие работы
Мировая экономика и международные отношения Швейцарии
evelin
: 7 ноября 2013
Швейцария - высокоразвитое индустриальное государство с интенсивным сельским хозяйством, один из крупнейших экспортеров капитала и финансовых центров мира. Высокий уровень концентрации капитала сочетается с относительно невысокой степенью концентрации производства.
Для промышленности Швейцарии характерно немассовое производство высококачественных изделий на экспорт. Страна специализируется на производствах высококачественных дорогих изделий, требующих немного сырья, но большого труда. Такому на
5 руб.
Клапан сетевой-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 19 мая 2016
Клапан сетевой-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
100 руб.
Технология разработки программного обеспечения. Экзамен. Вариант №8
zhekaersh
: 23 февраля 2015
Экзаменационные вопросы
Вопрос 1. Общие вопросы и коллективная разработка (гл. 1, 5 и 7)
Вариант 8. Какие роли участников команды выделяются в методе бригады главного программиста?
Вопрос 2. Разработка требований
Вариант 8. Кто вовлекается в формирование и анализ требований? На какие этапы он подразделяется? Что выполняется на этих этапах?
Вопрос 3. Проектирование
Вариант 8. Какие имеются уровни абстракции компонентов?
Вопрос 4. Программирование и документирование
Вариант 8. Что такое модель
50 руб.
Экзаменационная работа. Вычислительная математика. Билет №2
fominovich
: 19 июня 2016
Билет №2
1. Вычислите и определите абсолютную и относительную погрешности результата.
sqr((a+b)*c/m-n)
, если a = 4.30 (+-) 0.05, b = 7.21 (+-) 0.02, c = 8.20 (+-) 0.05,
m = 12.417 (+-) 0.003, n = 8.370 (+-) 0.005.
2. Отделите корни уравнения аналитически и уточните один из них методом деления пополам, выполнив 3 шага метода. Оцените погрешность полученного результата.
3. Методом наименьших квадратов найдите аппроксимирующую функцию вида для функции, заданной таблично.
x 0 1 2 3
y
100 руб.