Курсовая работа и Лабораторные работы №№1-3 по дисциплине: Вычислительная математика. Вариант №2

Цена:
800 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon VM.EXE
material.view.file_icon vm.pas
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon VM.EXE
material.view.file_icon VM.PAS
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon VM.EXE
material.view.file_icon vm.pas
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon VM.EXE
material.view.file_icon vm.pas
material.view.file_icon Отчет.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Курсовая работа
Задание к работе:

Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
 Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
 Написать программу, которая:
 находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
 решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
 с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
 определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
 Программа должна выводить:
 найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
 решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
 результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
 количество теплоты Q.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.




Вариант 2
{(y^'=cosy/(4+x)+y@y(0)=k),
где k – наименьший положительный корень уравненияx^4+4x^3-8x^2-17=0.
Вопросы для защиты: 3, 8, 9, 13.





Задание к работе:

Лабораторная работа No1. Линейная интерполяция.

Задание на лабораторную работу
 Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i,i=1,2,...,14;
 выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos((x+10c)/c),c=N+1, N – последняя цифра пароля.

Лабораторная работа No2
Задание к работе:

 Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
 Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
 Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)
где с=0.01N, N– последняя цифра пароля.


Задание к работе:

Лабораторная работа No3. Численное дифференцирование

 Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
 Найти погрешность, с которой можно найти f^' (x) с вычисленным в пункте a) оптимальным шагом.
 Написать программу, которая
 выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
 По составленной таблице вычисляет приближенные значения f^' (x) в точках x_i=c+ih,i=1,2,...,15по формуле центральной разностной производной;
 выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sinc x,c=N+1, где N – последняя цифра пароля.

Дополнительная информация

Оценка: Отлично + Зачет
Дата оценки: 06.02.2022

Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Лабораторная работа №3 по дисциплине "Вычислительная математика" (вариант 2)
1. Написать программу нахождения определенного интеграла с точностью до 0.0001 двумя методами: трапеций и Симпсона. Для достижения заданной точности использовать метод двойного пересчета. Начальный шаг интегрирования взять равным половине интервала интегрирования. 2. Вывести для каждого метода шаг интегрирования, понадобившийся для достижения заданной точности, и приближенное значение интеграла. Вариант выбирается по последней цифре пароля. Вариант 2:
User Greenberg : 29 августа 2020
120 руб.
Лабораторная работа №3 по дисциплине "Вычислительная математика" (вариант №2)
Лабораторная работа №3. Численное дифференцирование 1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001. 2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом. 3. Написать программу, которая а) выводит таблицу значений функции с рассчитанным оптимальным шагом
User Greenberg : 28 августа 2020
120 руб.
ЛАБОРАТОРНАЯ РАБОТА №3 по дисциплине «Вычислительная математика». Вариант №2
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом . Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
User beklenev : 15 декабря 2015
99 руб.
Лабораторная работа №3 по дисциплине: Вычислительная математика. Вариант №2
1. Задание Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие |Xn+1 - Xn|<e , (e – заданная точность), при этом X≈(Xn + Xn+1)/2±e. Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант 2: x^(3)
User Jack : 25 августа 2014
100 руб.
Лабораторная работа № 3 по дисциплине: Вычислительная математика. Вариант № 2
Вариант 2: Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , ( – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре паро
User Nikk320 : 6 августа 2012
100 руб.
Лабораторные работы №1-3 по дисциплине: Вычислительная математика. Вариант 2
Лабораторная работа №1 «Линейная интерполяция» Задание на лабораторную работу 1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки. 2. Написать программу, которая а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
User SibGOODy : 22 августа 2024
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №2
Лабораторная работа No1. Линейная интерполяция. Задание на лабораторную работу Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки. Написать программу, которая выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округлен
User IT-STUDHELP : 1 декабря 2022
500 руб.
Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №2 promo
Лабораторные работы №№1-3 по дисциплине: Вычислительная математика. Вариант №2
Задание к работе: Лабораторная работа No1. Линейная интерполяция. Задание на лабораторную работу Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки. Написать программу, которая выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответст
User IT-STUDHELP : 6 февраля 2022
500 руб.
promo
Лабораторная работа № 5 по дисциплине "Дискретная математика" 2 семестр 6 вариант
Лабораторная работа № 5 Поиск компонент связности графа Задание: Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности. Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3). Пользователю должна
User mastar : 23 января 2012
125 руб.
Понятие и перспективы развития электронных денег
Введение…………………………………………………………………….3 История развития электронных денег………………………………….…5 Сущность электронных денег………………………………………….….9 Особенности развития электронных платежных систем России……...15 Электронные платежные системы в России………………………….…20 Пластиковые карты и их виды………………………………………...…30 Заключение………………………………………………………………..35 Список используемой литературы…………………………………...….37 Введение Неотъемлемой частью хозяйственной жизни человеческого общества на определенной ступени истор
User alfFRED : 27 октября 2013
10 руб.
Гидравлика Пермская ГСХА Задача 72 Вариант 1
Из открытого резервуара при постоянном напоре Н вытекает вода по трубопроводу, состоящему из двух участков, которые имеют длины l1 и l2, диаметры d1 и d2 и коэффициенты гидравлического трения λ1 = 0,021; λ2 = 0,029 соответственно. Определить: Скорость истечения воды из трубопровода при условии, что на ее величину оказывают влияние трение по длине и местные сопротивления: вход в трубу ζвх, задвижка ζз и внезапное расширение потока ζвн.расш. (значения коэффициента ζвн.расш см. в Приложении 6)
User Z24 : 5 ноября 2025
180 руб.
Гидравлика Пермская ГСХА Задача 72 Вариант 1
up Наверх