Курсовая работа по дисциплине: Вычислительная математика. Вариант №4
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Курсовая работа
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 4
{(y^'=(6-y^2 ) sinx+2y@y(0)=k),
где k – наименьший положительный корень уравнения3x^4-8x^3-18x^2+2=0.
Вопросы для защиты: 5, 6, 9, 12.
===========================================
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 4
{(y^'=(6-y^2 ) sinx+2y@y(0)=k),
где k – наименьший положительный корень уравнения3x^4-8x^3-18x^2+2=0.
Вопросы для защиты: 5, 6, 9, 12.
===========================================
Дополнительная информация
Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки: 1.12.2022г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 1.12.2022г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Курсовая работа по дисциплине: Вычислительная математика. Вариант 4
Roma967
: 11 января 2025
* Вариант 4, фамилия начинается на СОГЛАСНУЮ букву (метод хорд), а имя - на ГЛАСНУЮ (метод Симпсона)
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительн
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 29 марта 2023
Вариант №4
Задание
1. Найти аналитически интервалы изоляции действительных корней заданного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси. Убедитесь, что вторая производная сохраняет знаки на каждом интервале изоляции, в противном случае уменьшите длину интервала.
2. Написать программу нахождения наименьшего действительного корня нелинейного уравнения с точностью 0.0001 тремя методами:
а) методом деления пополам;
б)
500 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 12 февраля 2020
Вариант 4
{(y^'=(6-y^2 ) sinx+2y@y(0)=k),
где k – наименьший положительный корень уравнения .
Вопросы для защиты: 5, 6, 9, 12.
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьши
400 руб.
Курсовая работа по дисциплине "Вычислительная математика". Вариант №4
Greenberg
: 2 апреля 2012
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
y' = (6 - y^2) cos(x) + 2y
y(0) = 0.3
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с
245 руб.
Курсовая работа по дисциплине «Вычислительная математика» Семестр №3. Вариант №4
s1nd
: 3 июля 2014
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений ф
150 руб.
Курсовая работа по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Курсовая работа по дисциплине Вычислительная математика Вариант 1
400 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика»
vohmin
: 3 июня 2018
Задание:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождени
50 руб.
Курсовая работа по дисциплине «Вычислительная математика»
m9c1k
: 24 октября 2010
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного перес
320 руб.
Другие работы
Важнейшие проблемы российского производства
Qiwir
: 28 октября 2013
Содержание
Введение……………………………………………………………………….. 3
Проблема № 1. Непосильные налоги……………………………………... 3
Проблема № 2. Государственный рэкет………………………………….. 4
Проблема № 3. Дефицитные кадры……………………………………….. 5
Проблема № 4. Плохие деньги и искаженная структура цены…………. 6
Проблема № 5. Долларизация……………………………………………... 7
Проблема № 6. Непродуктивная инвестиционная среда………………... 8
Проблема № 7. Беззащитность интеллектуальной собственности…….. 9
Заключение………………………………………………………………….. 10
Список
10 руб.
Термодинамика и теплопередача ТюмГНГУ Теория теплообмена Задача 3 Вариант 20
Z24
: 12 января 2026
Стальной трубопровод диаметром d1/d2=100 мм/110 мм с коэффициентом теплопроводности λ1 покрыт изоляцией в 2 слоя одинаковой толщины δ2=δ3=50 мм, причем первый слой имеет коэффициент теплопроводности λ2, второй λ3.
Определить потери теплоты через изоляцию с 1 м трубы, если температура внутренней поверхности t1, а наружной поверхности изоляции t4. Определить температуру на границе соприкосновения слоев t3. Как изменится величина тепловых потерь с 1 м трубопровода, если слой изоляции поменять ме
200 руб.
Установка электропогружного центробежного насоса Чертеж. Общий вид УЭЦН
Laguz
: 16 марта 2025
Установка электропогружного центробежного насоса Чертеж и спецификация.
Тема: Разработка методов увеличения производительности насосов УЭЦН
чертеж в компасе 21 + дополнительно сохранён в компас 11, джпг
Файлы компаса можно просматривать и сохранять в нужный формат бесплатной программой КОМПАС-3D Viewer.
200 руб.
ВКР на тему "Анализ методов оценки показателей качества предоставления услуги IP-телефонии"
Алексей1222
: 26 декабря 2019
Телефонная связь, появившаяся в конце 19-го века, менее чем за 100 лет стала неотъемлемым элементом человеческой деятельности во всех отраслях. От качества и работоспособности телефонии зависят отношения в семье, успех в бизнесе и нередко жизни человека.
Возложенная ответственность порождает высокие требования по надежности и качеству телефонной связи.
Телефонию можно рассматривать с двух точек зрения - пользователя и оператора. Пользователь рассматривает телефонию как доступную ему услугу (сер
1000 руб.