Дискретная математика. Экзамен. Билет № 2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1) Понятие принципа математической индукции (индуктивное определение, индуктивное доказательство, с примерами).
2) Алгоритмы поиска кратчайших расстояний в графе – назвать, кратко охарактеризовать. Пояснить, в чем различие алгоритмов Флойда-Уоршалла и Дейкстры.
3) Выяснить, справедливо ли равенство (AB)C = (AС)(BC) для произвольных множеств A, B, C. Если нет – привести контрпример (Пример, для которого равенство не выполнено).
4) Применяя равносильные преобразования, доказать тождество: x y y x. Здесь x и y – булевы переменные.
2) Алгоритмы поиска кратчайших расстояний в графе – назвать, кратко охарактеризовать. Пояснить, в чем различие алгоритмов Флойда-Уоршалла и Дейкстры.
3) Выяснить, справедливо ли равенство (AB)C = (AС)(BC) для произвольных множеств A, B, C. Если нет – привести контрпример (Пример, для которого равенство не выполнено).
4) Применяя равносильные преобразования, доказать тождество: x y y x. Здесь x и y – булевы переменные.
Похожие материалы
Экзамен. Дискретная математика. билет 2
backardy
: 19 октября 2019
Билет № 2
Дисциплина Дискретная математика
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
.
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и лин
100 руб.
Экзамен по дискретной математике. Билет №2.
ДО Сибгути
: 5 февраля 2016
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и линейность. Ответ обосновать.
5. В автомашине 7 мест. Ско
150 руб.
Дискретная математика. Экзамен. Билет №2
student90s
: 23 июля 2015
Билет №2.
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
40 руб.
Экзамен по дискретной математике. Билет №2
vsh9
: 19 марта 2015
1. Теорема о «рукопожатиях»: о сумме степеней всех вершин графа.
2. Заданы универсальное множество U и три его подмножества A, B, C.
Проверить (доказать или опровергнуть) справедливость соотношения:
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства симметричности и транзитивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и линейность. Ответ обосновать.
5. В автомашине 7 мест.
250 руб.
Экзамен. Дискретная математика. Билет №2
Christy
: 18 сентября 2013
1. Проверить, является ли тавтологией формула: a&b→(a&b∨c∨ ̄c)
2. Применяя равносильные преобразования привести булеву функцию f = ( ̄x→ ̄( y))→( yz→ ̄x z) к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения. y(t)=x(t-1)→x(t)
50 руб.
Экзамен по дискретной математике. Билет № 2
tefant
: 1 февраля 2013
Билет № 2
Факультет ИВТ (ДО) Курс 1 Семестр 2
Дисциплина Дискретная математика
Понятие принципа математической индукции (индуктивное определение, индуктивное доказательство, с примерами).
Индуктивное определение – это определение какого-либо понятия A(n), зависящего от неотрицательного целого параметра n, протекающее по следующей схеме: задаётся А(0), правило получения значения A(n+1), если А(n) уже задано. Например, понятие факториала числа n определяется так: n!=1 при n=0, (n+1)!=n!*(n+1
200 руб.
Дискретная математика. Экзамен. Билет №2.
sibgutido
: 25 января 2013
Дискретная математика. Экзамен. Билет №2.
1. Проверить, является ли тавтологией формула:
a&b->(a&b u c u ^c)
2. Применяя равносильные преобразования привести булеву функцию f=... к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
y(t)=...
В пунктах 2 и 3 нет возможности полностью записать уравнения, так как они содержат специфические символы, которые не прописываются текстом. Если нужно подробнее задание могу отправить
80 руб.
Дискретная математика. Экзамен. Билет 2
sanco25
: 3 апреля 2012
1. Проверить, является ли тавтологией формула: a&b—(a&b v c v c(черта серху)).
2. Применяя равносильные преобразования привести булеву функцию
к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
Построить автомат – это значит определить множества и задать функции переходов и выходов. В моменты дискретного времени, отмеченные числами натурального ряда, на вход автомата поступает сигнал, на выходе наблюдается сигнал. После пре
200 руб.
Другие работы
Гидравлика и нефтегазовая гидромеханика ТОГУ Задача 37 Вариант 2
Z24
: 28 ноября 2025
К концам участка длиной L воздухопровода прямоугольного сечения (a×b) подключен микроманометр, заполненный спиртом (удельный вес спирта γсп=7740 Н/м³). При угле наклона измерительной трубки α показание манометра l (рис 31). Расход воздуха Q, удельный вес воздуха γ. Определить коэффициент гидравлического трения трубопровода λ.
150 руб.
Расчеты по теплообмену УрФУ Задача 3 Вариант 16
Z24
: 3 января 2026
Определить время нагрева τ до заданной температуры поверхности tпов, а также температуру на оси неограниченного цилиндра tc в момент окончания нагрева.
В печь, температура которой tпеч все время поддерживается постоянной, помещают длинный стальной цилиндр диаметром d. В момент загрузки в печь температура металла была равномерна по всему сечению и составляла tнач. Физические свойства стали приняты постоянными, не изменяющимися с температурой: коэффициент теплопроводности λм, теплоемкость см и
200 руб.
Лабораторные работы №1-№5 по Теории Информации
fominovich
: 5 сентября 2015
Лабораторная работа № 1 «Вычисление энтропии Шеннона».
1. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой
1000 руб.
Базы данных (Барахнин).
IT-STUDHELP
: 6 февраля 2022
Контрольная работа.
Работа с базами данных. Включение в программу файлов.
Цель: Изучение работы с базой данных средствами php и включение файлов в программу.
Практическая часть.
1. Создайте файл z10-1.htm с HTML-формой, позволяющей выбрать
а) структуру (группа флажков "structure") и/или
б) содержимое (группа флажков "content")
любой таблицы базы данных study:
При нажатии кнопки "Вывести" должен вызываться скрипт z10-2.php (для передачи названий таблиц используйте метод GET):
1000 руб.