СИНЕРГИЯ Математический анализ Тест 100 баллов 2023 год
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Adobe Acrobat Reader
Описание
СИНЕРГИЯ Математический анализ
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО 2023 год
Задания
1. Вычислите определенный интеграл ∫ (1/2 ⋅ t + 4t2)dt, t=-1..+1
1) 2 2/3
2) 0
3) 4 1/2
2. Вычислите определенный интеграл ∫ (x2 - 1)3xdx, x=1..2
1) 10 1/8
2) 26
3) 1
3. Вычислите определенный интеграл ∫ √(1 - x)dx, x=0..1
1) 2/3
2) 2 2/3
3) 0
4. Вычислите определенный интеграл ∫ √(6x - 2)dx, x=1..3
1) 56/9
2) 56
3) 8
4) −1/9
5. Вычислите определенный интеграл ∫ √(x)dx, x=1..4
1) 4 2/3
2) 2 2/3
3) 2
6. Вычислите определенный интеграл ∫ 1 / (1 - 2x)3, x=-2..0
0,24
0,4
0,008
7. Вычислите определенный интеграл ∫ 15xdx / (x2 - 1)3, x=2..4
0,4
0,8
0,5
8. Вычислите определенный интеграл ∫ 2dt / cos2t, x=0..π/4
1) 2
2) 1
3) 1/2
9. Вычислите определенный интеграл ∫ 2dx / ∜x, x=1..16
1) 56/3
2) 24
3) 28/3
4) 8/3
10. Вычислите определенный интеграл ∫ 2exdx, x=0..2
2e^2-2
2e^2-1
2e^2+2
2e^2
11. Вычислите определенный интеграл ∫ 2xdx / √(16 + x2), x=0..3
1) 2
2) 2/5
3) 1 1/5
12. Вычислите площадь плоской фигуры, ограниченной линиями: x = 2x – x2 и y = 0
1) 4/3
2) 3/4
3) 2 1/3
4) 1/3
13. Вычислите площадь плоской фигуры, ограниченной линиями: y = 1/cos^2x , y =0 , x1 = 0 , x2 = 45°
1) 1
2) 2
3) 1/2
4) 1/3
14. В каком из перечисленных случаев величина называется параметром?
если она сохраняет постоянное значение лишь в условиях данного процесса
если она всегда сохраняет одно и то же значение
если она принимает различные значения
15. В каких точках выпукла или вогнута кривая y = 2 - 3x - x2
1) выпукла во всех точках
2) вогунта во всех точках
3) (-3/2; -13/4) — точка перегиба
16. Вычислите предел по правилу Лопиталя lim (1 - cos4x) / (1 - cos6x), x⟶0
1) 4/9
2) 1/9
3) 2/3
4) 1
17. Вычислите предел по правилу Лопиталя lim (cos7x - 1) / (cos3x - 1), x⟶0
1) 49/9
2) 7/3
3) 0
4) ∞
18. Вычислите предел по правилу Лопиталя lim (x - arctgx) / x2, x⟶0
0
1
2
7
19. Вычислите предел по правилу Лопиталя lim ln(x2 - 8) / (x2 - 9), x⟶3
1) 1
2) 8/9
3) 0
4) ∞
20. Вычислите путь, пройденный точкой за 3 с от начала движения. Скорость точки, движущейся прямолинейно, задана уравнением
υ = 9t2 - 2t - 8
48 м
42 м
40 м
46 м
21. Вычислите силу давления воды на одну из стенок аквариума, имеющего длину 30 см и высоту 20 см
58,8 Н (6 кГ)
62 Н (6,1 кГ)
50 Н (5,1 кГ)
56 Н (5,7 кГ)
22. Вычислите силу давления воды на стенку шлюза, длина которого 20 м и высота 5 м, считая шлюз доверху заполненным водой
2,45 МН
24,5 МН
2,55 МН
2,25 МН
23. График какой функции симметричен относительно оси ординат?
четной функции
нечетной функции
функции общего вида
24. Даны дифференциальные уравнения. Укажите среди них линейные уравнения 1) y\' - 3y = xe3x; 2) y\' - 3y = y3e3x; 3) y\' + y / (x + 4) = tgx / (x + 4); 4) y\' + y2 / (x + 4) = tgx / (x + 4)
1, 3
1, 3, 4
2, 3, 4
3, 4
25. Даны дифференциальные уравнения. Укажите среди них однородные уравнения 1) (x2 + y2 + 2xy)dx + 2xydy = 0; 2) (x2 + y2 + 2x)dx + 2xydy = 0; 3) y\' = (y/x)2 + y/x + 49; 4) y\' = (y/x)2 + x; 5) y\' = (x + 7y) / 7y; 6) y\' = (x + 7) / 7y
1, 3, 5
1, 3, 4, 5
1, 3, 6
1, 3, 5, 6
26. Исследуйте ряд на сходимость 1/3 - 1/4 + 1/5 - 1/6 + ... + (-1)n+1 ⋅ 1 / (n + 2) + ...
сходится
расходится
абсолютно сходится
ничего нельзя сказать о сходимости ряда
27. Исследуйте ряд на сходимость 5/1 - 7/2 + 9/3 - ... + (-1)n+1 ⋅ (2n + 3) / n + ...
расходится
абсолютно сходится
условно сходится
сходится
28. Исследуйте функцию y=x^3+3x^2на экстремумы
максимум в точке -2; минимум в точке 0
максимум в точке 0; минимум в точке -2
максимум в точке 2; минимум в точке 0
29. Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?
частным решением
единичным решением
множественным решением
универсальным решением
30. Какая из перечисленных функций не относится к алгебраическим функциям?
логарифмическая функция
дробно-рациональная функция
целая рациональная функция
иррациональная функция
31. Какая из перечисленных функций не относится к трансцендентным функциям?
дробно-рациональная функция
показательная функция
логарифмическая функция
тригонометрическая функция
32. Какая кривая y = f(x) называется выпуклой на интервале (a, b)?
если все точки кривой лежат ниже любой ее касательной на этом интервале
если все точки кривой лежат на ее касательной на этом интервале
если все точки кривой лежат выше любой ее касательной на этом интервале
33. Какая поверхность называется графиком функции n переменных?
1) n-мерная гиперповерхность в пространстве Rn+1, точки которой имеют вид (x1, x2, ..., xn, f(x1, x2, ..., xn))
2) n-мерная гиперповерхность в пространстве Rn, точки которой имеют вид (x1, x2,..., xn, f(x1, x2, ..., xn))
3) (n + 1)-мерная гиперповерхность в пространстве Rn+1, точки которой имеют вид (x1, x2, ..., xn, f(x1, x2, ..., xn))
34. Какая функция называется четной?
1) если для любых значений x из области определения f(−x) = f(x)
2) если для любых значений x из области определения f(−x) = −f(x)
3) если для любых значений x из области определения f(−x) = −f(−x)
35. Какая функция называется явной?
если функция задана формулой y = f(x), в которой правая часть не содержит зависимой переменной
если функция задана формулой y = f(x), в которой левая часть не содержит зависимой переменной
если функция задана уравнением F(х, у) = 0, не разрешенным относительно зависимой переменной
36. Какая функция у = f(x) называется возрастающей на промежутке X?
если большему значению аргумента из этого промежутка соответствует большее значение функции
если большему значению аргумента из этого промежутка соответствует меньшее значение функции
если большему значению аргумента из этого промежутка соответствует положительное значение функции
37. Какова область определения функции? 1/f(x)
f(x) ≠ 0
f(x) ≥ 0
f(x) ≤ 0
−1 ≤ f(x) ≤ −1
38. Каково необходимое условие возрастания функции?
1) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) ≥ 0 для всех x из этого интервала
2) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) ≤ 0 для всех x из этого интервала
3) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) = 0 для всех x из этого интервала
39. Какое уравнение называется дифференциальным уравнением?
уравнение, содержащее независимую переменную, функцию от этой независимой переменной и ее производные различных порядков
уравнение, содержащее независимую переменную и функцию от этой независимой переменной
уравнение, содержащее функцию от независимой переменной и ее производные различных порядков
40. Какую подстановку используют при решении уравнений Бернулли?
1) y = u ⋅ v
2) y/x = t
3) y = u + v
41. Какую работу совершает сила в 8 H при растяжении пружины на 6 см?
0,24 Дж
20 Дж
0,2 Дж
2 Дж
42. На каком из рисунков изображена область определения функции?
z = ln(2 - x + y) / √(x + y)
1
2
3
4
43. Найдите ∫ ((x + 1) / (x2 + 1))dx
1) 1/2 ⋅ ln(x2 + 1) + arctgx + C
2) ln(x2 + 1) + arcctgx + C
3) 2ln(x2 + 1) + arcctgx + C
44. Найдите ∫ (2/x2 - 4/√x + 3∛(x2))dx
1) 9/5 ⋅ x ⋅ ∛(x2) − 8√x − 2/x + C
2) 3/5 ⋅ ∛(x2) − 8x − 2/x + C
3) 9/5 ⋅ √x − 8√x − 2 + C
45. Найдите ∫ (2/x3 - 4/√x + 3∛(x2))dx
1) 9/5 ⋅ x∛(x2) - 8√x - 2/x + C
2) 3/5 ⋅ ∛(x2) - 8x - 2/x + C
3) 9/5 ⋅ √x - 8√x - 2 + C
46. Найдите ∫ (3 + 5x)4dx
1) 1/25 ⋅ (3 + 5x)5 + C
2) 1/25 ⋅ (3 + 5x)3 + C
3) 1/16 ⋅ (3 + 5x)3 + C
47. Найдите ∫ (3x - x2)dx
1) 3/2 ⋅ x2 − 1/3 ⋅ x3 + C
2) 3/2 ⋅ x − 1/3 ⋅ x2 + C
3) 3 − 2x + C
48. Число F(X0) называется наибольшим значением функции на отрезке [a; b], если
1) для всех x из этого отрезка выполняется неравенство f(x) ≤ f(x0)
2) для всех x из этого отрезка выполняется неравенство f(x) ≥ f(x0)
1) для всех x из этого отрезка выполняется неравенство f(x) = f(x0)
49. Что называется критическими точками второго рода?
точки области определения, в которых вторая производная функции y = f(x) обращается в нуль или не существует
точки области определения, в которых первая производная функции y = f(x) обращается в нуль или не существует
точки области определения, в которых производная функции y = f(x) равна единице
50. Что называется порядком дифференциального уравнения?
наивысший порядок производной, входящей в дифференциальное уравнение
наивысший порядок переменной, входящей в дифференциальное уравнение
наивысший порядок второй производной, входящей в дифференциальное уравнение
51. Укажите частное решение дифференциального уравнения y′ + 2y = 4, удовлетворяющее начальному условию y(0) = 5
1) y = 3e−2x + 2
2) y = e−2x + 5
3) y = ln|C − 2x|
4) y = 5 − 2x
52. Чему равен неопределенный интеграл от алгебраической суммы функций?
алгебраической сумме интегралов от этих функций
алгебраической разности интегралов от этих функций
алгебраическому произведению интегралов от этих функций
53. Чему равна производная постоянной функции?
0
1
-1
54. Чему, согласно правилу Лопиталя, равен предел отношения двух бесконечно малых или бесконечно больших функций, если последний существует?
пределу отношения производных двух бесконечно малых или бесконечно больших функций
пределу произведения производных двух бесконечно малых или бесконечно больших функций
пределу суммы производных двух бесконечно малых или бесконечно больших функций
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО 2023 год
Задания
1. Вычислите определенный интеграл ∫ (1/2 ⋅ t + 4t2)dt, t=-1..+1
1) 2 2/3
2) 0
3) 4 1/2
2. Вычислите определенный интеграл ∫ (x2 - 1)3xdx, x=1..2
1) 10 1/8
2) 26
3) 1
3. Вычислите определенный интеграл ∫ √(1 - x)dx, x=0..1
1) 2/3
2) 2 2/3
3) 0
4. Вычислите определенный интеграл ∫ √(6x - 2)dx, x=1..3
1) 56/9
2) 56
3) 8
4) −1/9
5. Вычислите определенный интеграл ∫ √(x)dx, x=1..4
1) 4 2/3
2) 2 2/3
3) 2
6. Вычислите определенный интеграл ∫ 1 / (1 - 2x)3, x=-2..0
0,24
0,4
0,008
7. Вычислите определенный интеграл ∫ 15xdx / (x2 - 1)3, x=2..4
0,4
0,8
0,5
8. Вычислите определенный интеграл ∫ 2dt / cos2t, x=0..π/4
1) 2
2) 1
3) 1/2
9. Вычислите определенный интеграл ∫ 2dx / ∜x, x=1..16
1) 56/3
2) 24
3) 28/3
4) 8/3
10. Вычислите определенный интеграл ∫ 2exdx, x=0..2
2e^2-2
2e^2-1
2e^2+2
2e^2
11. Вычислите определенный интеграл ∫ 2xdx / √(16 + x2), x=0..3
1) 2
2) 2/5
3) 1 1/5
12. Вычислите площадь плоской фигуры, ограниченной линиями: x = 2x – x2 и y = 0
1) 4/3
2) 3/4
3) 2 1/3
4) 1/3
13. Вычислите площадь плоской фигуры, ограниченной линиями: y = 1/cos^2x , y =0 , x1 = 0 , x2 = 45°
1) 1
2) 2
3) 1/2
4) 1/3
14. В каком из перечисленных случаев величина называется параметром?
если она сохраняет постоянное значение лишь в условиях данного процесса
если она всегда сохраняет одно и то же значение
если она принимает различные значения
15. В каких точках выпукла или вогнута кривая y = 2 - 3x - x2
1) выпукла во всех точках
2) вогунта во всех точках
3) (-3/2; -13/4) — точка перегиба
16. Вычислите предел по правилу Лопиталя lim (1 - cos4x) / (1 - cos6x), x⟶0
1) 4/9
2) 1/9
3) 2/3
4) 1
17. Вычислите предел по правилу Лопиталя lim (cos7x - 1) / (cos3x - 1), x⟶0
1) 49/9
2) 7/3
3) 0
4) ∞
18. Вычислите предел по правилу Лопиталя lim (x - arctgx) / x2, x⟶0
0
1
2
7
19. Вычислите предел по правилу Лопиталя lim ln(x2 - 8) / (x2 - 9), x⟶3
1) 1
2) 8/9
3) 0
4) ∞
20. Вычислите путь, пройденный точкой за 3 с от начала движения. Скорость точки, движущейся прямолинейно, задана уравнением
υ = 9t2 - 2t - 8
48 м
42 м
40 м
46 м
21. Вычислите силу давления воды на одну из стенок аквариума, имеющего длину 30 см и высоту 20 см
58,8 Н (6 кГ)
62 Н (6,1 кГ)
50 Н (5,1 кГ)
56 Н (5,7 кГ)
22. Вычислите силу давления воды на стенку шлюза, длина которого 20 м и высота 5 м, считая шлюз доверху заполненным водой
2,45 МН
24,5 МН
2,55 МН
2,25 МН
23. График какой функции симметричен относительно оси ординат?
четной функции
нечетной функции
функции общего вида
24. Даны дифференциальные уравнения. Укажите среди них линейные уравнения 1) y\' - 3y = xe3x; 2) y\' - 3y = y3e3x; 3) y\' + y / (x + 4) = tgx / (x + 4); 4) y\' + y2 / (x + 4) = tgx / (x + 4)
1, 3
1, 3, 4
2, 3, 4
3, 4
25. Даны дифференциальные уравнения. Укажите среди них однородные уравнения 1) (x2 + y2 + 2xy)dx + 2xydy = 0; 2) (x2 + y2 + 2x)dx + 2xydy = 0; 3) y\' = (y/x)2 + y/x + 49; 4) y\' = (y/x)2 + x; 5) y\' = (x + 7y) / 7y; 6) y\' = (x + 7) / 7y
1, 3, 5
1, 3, 4, 5
1, 3, 6
1, 3, 5, 6
26. Исследуйте ряд на сходимость 1/3 - 1/4 + 1/5 - 1/6 + ... + (-1)n+1 ⋅ 1 / (n + 2) + ...
сходится
расходится
абсолютно сходится
ничего нельзя сказать о сходимости ряда
27. Исследуйте ряд на сходимость 5/1 - 7/2 + 9/3 - ... + (-1)n+1 ⋅ (2n + 3) / n + ...
расходится
абсолютно сходится
условно сходится
сходится
28. Исследуйте функцию y=x^3+3x^2на экстремумы
максимум в точке -2; минимум в точке 0
максимум в точке 0; минимум в точке -2
максимум в точке 2; минимум в точке 0
29. Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?
частным решением
единичным решением
множественным решением
универсальным решением
30. Какая из перечисленных функций не относится к алгебраическим функциям?
логарифмическая функция
дробно-рациональная функция
целая рациональная функция
иррациональная функция
31. Какая из перечисленных функций не относится к трансцендентным функциям?
дробно-рациональная функция
показательная функция
логарифмическая функция
тригонометрическая функция
32. Какая кривая y = f(x) называется выпуклой на интервале (a, b)?
если все точки кривой лежат ниже любой ее касательной на этом интервале
если все точки кривой лежат на ее касательной на этом интервале
если все точки кривой лежат выше любой ее касательной на этом интервале
33. Какая поверхность называется графиком функции n переменных?
1) n-мерная гиперповерхность в пространстве Rn+1, точки которой имеют вид (x1, x2, ..., xn, f(x1, x2, ..., xn))
2) n-мерная гиперповерхность в пространстве Rn, точки которой имеют вид (x1, x2,..., xn, f(x1, x2, ..., xn))
3) (n + 1)-мерная гиперповерхность в пространстве Rn+1, точки которой имеют вид (x1, x2, ..., xn, f(x1, x2, ..., xn))
34. Какая функция называется четной?
1) если для любых значений x из области определения f(−x) = f(x)
2) если для любых значений x из области определения f(−x) = −f(x)
3) если для любых значений x из области определения f(−x) = −f(−x)
35. Какая функция называется явной?
если функция задана формулой y = f(x), в которой правая часть не содержит зависимой переменной
если функция задана формулой y = f(x), в которой левая часть не содержит зависимой переменной
если функция задана уравнением F(х, у) = 0, не разрешенным относительно зависимой переменной
36. Какая функция у = f(x) называется возрастающей на промежутке X?
если большему значению аргумента из этого промежутка соответствует большее значение функции
если большему значению аргумента из этого промежутка соответствует меньшее значение функции
если большему значению аргумента из этого промежутка соответствует положительное значение функции
37. Какова область определения функции? 1/f(x)
f(x) ≠ 0
f(x) ≥ 0
f(x) ≤ 0
−1 ≤ f(x) ≤ −1
38. Каково необходимое условие возрастания функции?
1) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) ≥ 0 для всех x из этого интервала
2) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) ≤ 0 для всех x из этого интервала
3) если функция y = f(x) дифференцируема и возрастает на интервале (a; b), то f\'(x) = 0 для всех x из этого интервала
39. Какое уравнение называется дифференциальным уравнением?
уравнение, содержащее независимую переменную, функцию от этой независимой переменной и ее производные различных порядков
уравнение, содержащее независимую переменную и функцию от этой независимой переменной
уравнение, содержащее функцию от независимой переменной и ее производные различных порядков
40. Какую подстановку используют при решении уравнений Бернулли?
1) y = u ⋅ v
2) y/x = t
3) y = u + v
41. Какую работу совершает сила в 8 H при растяжении пружины на 6 см?
0,24 Дж
20 Дж
0,2 Дж
2 Дж
42. На каком из рисунков изображена область определения функции?
z = ln(2 - x + y) / √(x + y)
1
2
3
4
43. Найдите ∫ ((x + 1) / (x2 + 1))dx
1) 1/2 ⋅ ln(x2 + 1) + arctgx + C
2) ln(x2 + 1) + arcctgx + C
3) 2ln(x2 + 1) + arcctgx + C
44. Найдите ∫ (2/x2 - 4/√x + 3∛(x2))dx
1) 9/5 ⋅ x ⋅ ∛(x2) − 8√x − 2/x + C
2) 3/5 ⋅ ∛(x2) − 8x − 2/x + C
3) 9/5 ⋅ √x − 8√x − 2 + C
45. Найдите ∫ (2/x3 - 4/√x + 3∛(x2))dx
1) 9/5 ⋅ x∛(x2) - 8√x - 2/x + C
2) 3/5 ⋅ ∛(x2) - 8x - 2/x + C
3) 9/5 ⋅ √x - 8√x - 2 + C
46. Найдите ∫ (3 + 5x)4dx
1) 1/25 ⋅ (3 + 5x)5 + C
2) 1/25 ⋅ (3 + 5x)3 + C
3) 1/16 ⋅ (3 + 5x)3 + C
47. Найдите ∫ (3x - x2)dx
1) 3/2 ⋅ x2 − 1/3 ⋅ x3 + C
2) 3/2 ⋅ x − 1/3 ⋅ x2 + C
3) 3 − 2x + C
48. Число F(X0) называется наибольшим значением функции на отрезке [a; b], если
1) для всех x из этого отрезка выполняется неравенство f(x) ≤ f(x0)
2) для всех x из этого отрезка выполняется неравенство f(x) ≥ f(x0)
1) для всех x из этого отрезка выполняется неравенство f(x) = f(x0)
49. Что называется критическими точками второго рода?
точки области определения, в которых вторая производная функции y = f(x) обращается в нуль или не существует
точки области определения, в которых первая производная функции y = f(x) обращается в нуль или не существует
точки области определения, в которых производная функции y = f(x) равна единице
50. Что называется порядком дифференциального уравнения?
наивысший порядок производной, входящей в дифференциальное уравнение
наивысший порядок переменной, входящей в дифференциальное уравнение
наивысший порядок второй производной, входящей в дифференциальное уравнение
51. Укажите частное решение дифференциального уравнения y′ + 2y = 4, удовлетворяющее начальному условию y(0) = 5
1) y = 3e−2x + 2
2) y = e−2x + 5
3) y = ln|C − 2x|
4) y = 5 − 2x
52. Чему равен неопределенный интеграл от алгебраической суммы функций?
алгебраической сумме интегралов от этих функций
алгебраической разности интегралов от этих функций
алгебраическому произведению интегралов от этих функций
53. Чему равна производная постоянной функции?
0
1
-1
54. Чему, согласно правилу Лопиталя, равен предел отношения двух бесконечно малых или бесконечно больших функций, если последний существует?
пределу отношения производных двух бесконечно малых или бесконечно больших функций
пределу произведения производных двух бесконечно малых или бесконечно больших функций
пределу суммы производных двух бесконечно малых или бесконечно больших функций
Дополнительная информация
СИНЕРГИЯ Математический анализ
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО 2023 год
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО 2023 год
Похожие материалы
МТИ МосТех МосАП МФПУ Синергия Специальные главы математического анализа Тест 93 из 100 баллов 2023 год
Synergy2098
: 17 октября 2023
2023 год
МТИ МосТех МосАП МФПУ Синергия Специальные главы математического анализа
Тема: МТИ МосТех МосАП МФПУ Синергия Тест 93 из 100 баллов 2023 год
Задания
Результат 93 из 100 баллов
1. Число Стирлинга второго рода из n по k, обозначаемым S (n, k), называется ...
количество неупорядоченных разбиений n – элементного множества на k непустых подмножеств
количество неупорядоченных значений – элементного множества на k непустых подмножеств
количество неупорядоченных разбиений n
2. Размещение – эт
228 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.