Контрольная работа 1 Дискретная математика Вариант 6
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)}; P2 = {(1,1),(2,4),(2,1),(3,3),(4,2),(4,1)}.
No3 Задано бинарное отношение P R2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P = {(x,y) | x + y = –2}.
No4 Доказать утверждение методом математической индукции:
No5 Бригада из десяти взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 14 или 22? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x6·y2·z, b=x3·y·z2, c=x8·z2 в разложении (2·x2+3·y+5·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 6·an+1 + 4·an = 0 и начальным условиям a1=1, a2=3.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф.
Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)}; P2 = {(1,1),(2,4),(2,1),(3,3),(4,2),(4,1)}.
No3 Задано бинарное отношение P R2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P = {(x,y) | x + y = –2}.
No4 Доказать утверждение методом математической индукции:
No5 Бригада из десяти взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 14 или 22? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x6·y2·z, b=x3·y·z2, c=x8·z2 в разложении (2·x2+3·y+5·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 6·an+1 + 4·an = 0 и начальным условиям a1=1, a2=3.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф.
Найти:
а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
2024 год
Новожилов
Зачет
Новожилов
Зачет
Похожие материалы
Дискретная математика. Контрольная работа №1 (Вариант №6)
Alexey8
: 27 мая 2015
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”.
60 руб.
Контрольная работа № 1 по дисциплине "Дискретная математика" 2 семестр 6 вариант
mastar
: 23 января 2012
Контрольная работа No 1
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью,
125 руб.
Контрольная работа № 1 по дисциплине «Дискретная математика». Саратовский Технический Университет. Вариант 6
Максим102
: 14 июля 2016
Контрольная работа № 1
по дисциплине «Дискретная математика»
для студентов заочной формы обучения (5 семестр)
направления ИКТС
Задание № 1. Исходя из определений равенства множеств и операций над множествами, доказать тождество и проверить его с помощью диаграммы Эйлера – Венна.
6. .
Задание № 3. С помощью истинностных таблиц проверить, являются ли эквивалентными формулы и .
Задание № 4. Задана симметричная матрица неотрицательных целых чисел.
1) Нарисовать на плоскости граф (единств
250 руб.
Другие работы
СИНЕРГИЯ Ответственность за преступления против собственности - Тест 100 баллов 2023 год
Synergy2098
: 27 декабря 2023
СИНЕРГИЯ Ответственность за преступления против собственности
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО (100 баллов)
2023 год
Ответы на 25 вопросов
Результат – 100 балла
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
Ответственность за преступления против собственности.фю_БАК
Занятие 1
Литература
1. Грабеж отличается от разбоя
2. Грабеж является
3. Если вымогательство сопряжено с побоями, совершением иных насильственных действий, причинивших физическую боль, а также с
228 руб.
Теоретическая механика ИРНИТУ Задача С2 Рисунок С2.3 Вариант 1
Z24
: 14 ноября 2025
Определение координат центра тяжести тела
Две однородные прямоугольные пластины, приваренные под прямым углом друг к другу, образуют угольник. Размеры пластин в направлениях, параллельных координатным осям х, у, z, равны соответственно или 2l, 3l и l (рис. С2.0 ÷ С2.4), или 2l, 3l и 4l (рис. С2.5÷С2.9). Силы тяжести большей и меньшей пластин (рис. С2.0 ÷ С2.4) соответственно равны 10 кН и 4 кН, для рис. С2.5 ÷ С2.9 силы тяжести пластин одинаковы и равны 8 кН. Каждая из пластин расположена пар
250 руб.
Контрольная работа №1 по дисциплине «Физика». 1-й семестр, Вариант № 22
pbvfktnj
: 13 марта 2012
Задача №112.
С тележки, свободно движущейся по горизонтальному пути со скоростью u1 = 3 м/с, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной u1=4 м/с. Определить горизонтальную составляющую скорости u2x человека при прыжке относительно тележки. Масcа тележки m1 = 210 кг, масса человека m2=70 кг.
Задача №122.
Шар массой движется со скоростью и сталкивается с покоящимся шаром массой . Какая работа будет совершена при дефор
150 руб.
Программирование на языке высокого уровня (часть 1). Лабораторная работа № 2. Вариант № 9
TechUser
: 29 октября 2013
Тема 1: Операторы циклов с условиями: While и Repeat.
Задание:
Написать программу для вычисления выражения 0,6 - 0,7 + 0,8 -...- 3,3 и вывода на экран полученного значения, используя циклический оператор Repeat.
50 руб.