Лабораторная работа 1 Дискретная математика - Отношения и их свойства
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подаётся множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчёт – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Алгоритм решения задачи: В программе реализовано “меню”, выбирая из пунктов которого пользователь может проводить различные действия в рамках поставленной задачи. Пользователь вводит элементы множества A, затем он имеет возможность ввести список упорядоченных пар, что задают R (при неверном вводе будет выведено сообщение об ошибке).
Затем можно просмотреть список элементов множества A или списка пар бинарного отношения R (а также его матрицы). Проверяются свойства бинарного отношения R и, соответственно, выводятся на экран – рефлексивно, антирефлексивно, симметрично, антисимметрично, транзитивно ли бинарное отношение R (проверка происходит во время выполнения соответствующих функций в программе). Например, при нахождении симметричности программа поочерёдно проходит все элементы матрицы. При нахождении элемента [n, m] со значением 1, проверяется значение элемента [m, n]. Если он равен 1, то алгоритм продолжается пока таким образом не будет проверена вся матрица. В случае если элемент [m, n] будет иметь значение 0, то делается вывод, что бинарное отношение не симметрично, и алгоритм прекращается.
Пользователь также имеет возможность изменить бинарное отношение (удалить или создать пару элементов). После этих действий результаты будут выводиться уже с учетом произошедших изменений.
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подаётся множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчёт – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Алгоритм решения задачи: В программе реализовано “меню”, выбирая из пунктов которого пользователь может проводить различные действия в рамках поставленной задачи. Пользователь вводит элементы множества A, затем он имеет возможность ввести список упорядоченных пар, что задают R (при неверном вводе будет выведено сообщение об ошибке).
Затем можно просмотреть список элементов множества A или списка пар бинарного отношения R (а также его матрицы). Проверяются свойства бинарного отношения R и, соответственно, выводятся на экран – рефлексивно, антирефлексивно, симметрично, антисимметрично, транзитивно ли бинарное отношение R (проверка происходит во время выполнения соответствующих функций в программе). Например, при нахождении симметричности программа поочерёдно проходит все элементы матрицы. При нахождении элемента [n, m] со значением 1, проверяется значение элемента [m, n]. Если он равен 1, то алгоритм продолжается пока таким образом не будет проверена вся матрица. В случае если элемент [m, n] будет иметь значение 0, то делается вывод, что бинарное отношение не симметрично, и алгоритм прекращается.
Пользователь также имеет возможность изменить бинарное отношение (удалить или создать пару элементов). После этих действий результаты будут выводиться уже с учетом произошедших изменений.
Дополнительная информация
2024
зачет
Новожилов
зачет
Новожилов
Похожие материалы
Лабораторная работа №1 По дисциплине: Дискретная математика ОТНОШЕНИЯ И ИХ СВОЙСТВА, вариант 7
Prorabs
: 15 ноября 2019
Задание
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлекси
120 руб.
Лабораторная работа № 1. Дискретная математика
Antipenko2016
: 8 января 2017
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств
150 руб.
Лабораторная работа №1(Дискретная математика)
spfly
: 21 марта 2012
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на з
100 руб.
Лабораторная работа №1. Дискретная математика
m9c1k
: 18 ноября 2009
Задание1:
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств выбирается требуемая операция (посредством т
200 руб.
Отношения и их свойства
ty4ka
: 23 сентября 2020
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Отношения и их свойства
ty4ka
: 23 сентября 2020
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Отношения и их свойства
olejean
: 23 декабря 2012
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходи
100 руб.
Лабораторная работа №1. Дискретная математика (СибГУТИ)
Lost
: 15 февраля 2012
Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается требуемая операция (пос
70 руб.
Другие работы
Бюджетная система
evelin
: 22 января 2013
Система финансов общества состоит из следующих подсистем
Государственные финансы включают в себя
Страхование как финансовая подсистема общества включает в себя
Проблемами в области государственных и муниципальных финансов являются
Государственные доходы - это
Государственные расходы - это
За счет чего образуются централизованные государственные доходы?
Децентрализованные доходы образуются из
К принципам организационного построения системы государственных расходов относятся
Верно ли утверждение:
10 руб.
Зкзамен по дисциплине "Методы оптимальных решений" билет №8
Albinashiet
: 2 декабря 2014
1. Решить графически задачу линейного программирования:
2. Сельскохозяйственное предприятие планирует посадить некоторую сельскохозяйственную культуру двух сортов. Посевная площадь 1000 га. Сорта отличаются друг от друга требованиями к влаге во время вегетационного периода. Проанализировав погодные условия, выделены 4 состояния погоды (S1, S2, S3, S4), отличающиеся режимом осадков. Средняя урожайность (ц/га) каждого сорта на всем участке для каждого состояния погоды приведена в таблице:
S1 S2
150 руб.
Корпус. Вариант №4.
bublegum
: 11 февраля 2021
Корпус. Вариант 4. Графическая работа 10.
По двум видам построить третий. Выполнить разрезы. Проставить размеры. Изобразить деталь в изометрии с вырезом четверти.
3d модель и чертеж (все на скриншотах изображено) выполнены в компасе 3D v13, возможно открыть в 14,15,16,17,18,19 и выше версиях компаса.
Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
60 руб.
Обзор существующих газоанализаторов
evelin
: 17 ноября 2013
Фотоколориметрические газоанализаторы. Действие указанных приборов основано на цветных избирательных реакциях между реактивом-индикатором в растворе, на ленте или специальном порошке и анализируемым компонентом газовоздушной смеси. При этом мерой концентрации определяемого компонента является интенсивность окраски образующихся продуктов реакции. Фотоколориметрические газоанализаторы обладают достаточно высокой чувствительностью и избирательностью, что достигается выбором характерного химического
10 руб.