Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2

Состав работы

material.view.file_icon
material.view.file_icon exam.docx
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

илет №2

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0


2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М

Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 20.01.2023
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Билет №2 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программ
User freelancer : 17 августа 2016
70 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год)
Билет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимос
User IT-STUDHELP : 1 февраля 2019
340 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год) promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 4 7 1 2 0 5 6 9 4 5 0 8 3 7 6 8 0 1 1 9 3 1 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
User Cherebas : 24 марта 2013
100 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
User uliya5 : 14 апреля 2024
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Билет №4 1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User IT-STUDHELP : 20 апреля 2023
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4 promo
Язык коммерческой и политтической рекламы
План: Введение; Особенности рекламы; Язык политической рекламы; Язык коммерческой рекламы; Заключение; Литература. Введение Одним из самых ярких видов вербальной коммуникации является реклама. Будь она политическая или коммерческая, она всегда привлекает внимание и, безусловно, является неотъемлемой частью развития общества, поэтому следует изучать ее язык и особенности построения рекламных текстов. Хотя реклама и появилась сравнительно недавно, она достаточно полно представлена в обобщенном ви
User Elfa254 : 10 января 2014
15 руб.
Контрольная работа по дисциплине: Системы сигнализации в сетях связи. Вариант 5
Вариант 5 TLink1A 12:07.098 000: 15 35 22 85 01 60 10 28 32 01 01 00 60 00 0A 03 010: 02 0A 08 83 10 12 21 34 24 21 0F 0A 07 03 13 83 020: 21 35 96 30 00 TLink1A 12:07.333 000: 25 54 0B 85 01 60 10 56 D5 00 06 16 01 00 TLink1A 12:07.829 000: 25 B5 0D 85 01 60 10 18 51 01 0C 02 00 02 8A 90 TLink1B 12:02.272 000: 65 65 14 85 41 60 00 48 34 01 09 01 21 08 83 10 010: 83 23 76 25 26 0F 00 TLink1A 12:01.338 000: 45 54 0E 85 01 60 10 28 9
User Roma967 : 16 марта 2025
1300 руб.
promo
Контрольная работа № 2 по физике
Контрольная работа No 2 По Физика Ядерных Реакторов ТПН Задача No хх. Чему равняется полное макроскопическое сечение взаимодействия тепловых нейтронов с ядрами гомогенной смеси, представленной в таблице 1. Воспользуйтесь данными из приложения 1 и 2. Таблица 1. Варианты. Вар. Среда Плотность Обогащение Объемные доли 34 U2C3 и Zr-91 γ (U2C3) = 14 г/см3 γ (Zr-91) = 6.4 г/см3 x (U-235) = 4,2 % ε (U2C3) = 0.6 ε (Zr-91) = 0.4
User anderwerty : 15 января 2016
100 руб.
Напрямки розвитку волоконної оптики
Одним з основних напрямків розвитку волоконної оптики в теперішній час є створення волоконних лазерів, що генерують в нових спектральних діапазонах. [4] Волоконні лазери були розроблені порівняно недавно, в 1980-х роках минулого сторіччя. З лазерів з напівпровідниковим накачуванням найбільш популярними є волоконні лазери. У цей час відомі моделі волоконних технологічних лазерів потужністю до 20 кВт. Ці пристрої мають невисоку вартість, компактні, зручні для сполучення з магістральним волокном п
User alfFRED : 16 сентября 2013
10 руб.
up Наверх