Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2

Состав работы

material.view.file_icon
material.view.file_icon exam.docx
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

илет №2

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0


2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М

Номер товара, i mi сi M
1 6 25 22
2 3 12
3 7 26

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 20.01.2023
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Билет №2 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программ
User freelancer : 17 августа 2016
70 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год)
Билет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимос
User IT-STUDHELP : 1 февраля 2019
340 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2019 год) promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 2 4 7 1 2 0 5 6 9 4 5 0 8 3 7 6 8 0 1 1 9 3 1 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
User Cherebas : 24 марта 2013
100 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
User uliya5 : 14 апреля 2024
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Билет №4 1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User IT-STUDHELP : 20 апреля 2023
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4 promo
Блок подвесной. Вариант 3
Блок подвесной. Вариант 3 Вариант 3. Блок подвесной Грузоподъемное устройство, состоящее из скобы 1, к которому подвешивается груз, и вращающегося на оси ролика, на ободе которого имеется желобок (ручей) для каната или цепи. Вращаясь вокруг собственной оси, блок перемещается в пространстве поступательно вместе с грузом. Чтобы с блоком 4 не вращалась ось 3, в прорези на оси вставлены планки 6, закрепленные на серьгах 5 винтами 7. Блок подвесной. Вариант 3 Блок подвесной. Вариант 3 Сборочный чер
User lepris : 17 сентября 2022
170 руб.
Блок подвесной. Вариант 3
Теория вероятностей и матиматическая статистика. Экзамен. 4-й семестр, Билет №18
Билет № 18 1. Дисперсия и среднее квадратическое отклонение случайной величины и их свойства. 2. . Случайная величина X имеет распределение: X -2 -1 0 2 1 и y=|x| Найти распределение случайной величины Y и ее математическое ожидание. 3. Интегральная функция распределения случайного вектора (X,Y): F(x,y)=(1-e^-2x)(1-e^-3y) при x>0 или y>0 Найти центр рассеивания случайного вектора. 4. Из колоды в 36 карт выбирают 4. Какова вероятность того, что среди них будет три туза? 5.Производится ст
User Vasay2010 : 13 марта 2013
46 руб.
Моделирование и методы измерения параметров радиокомпонентов электронных схем
ВВЕДЕНИЕ ГЛАВА1. ИЗМЕРИТЕЛЬНЫЕ ЗАДАЧИ ПРИ ОПРЕДЕЛЕНИИ МОДЕЛЕЙ РАДИОКОМПОНЕНТОВ 1.1. Структура элементной базы радиоэлектронных 1.2. Связь двухполюсных и многополюсных радиокомпонентов 1.3. Модели радиокомпонентов 1.3.1.Общие положения 1.3.2.Классификация моделей радиокомпонентов 1.3.3.Основные требования к моделям 1.3.4.Макромодели пассивных радиокомпонентов 1.3.5.Встроенные макромодели транзисторов 1.3.6.Макромодели, определяемые пользователем 1.3.7.Факторные статистические модели многополюсных
User DocentMark : 6 декабря 2012
10 руб.
Логистика. Контрольная работа. Вариант №5
Задание Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – А условных единиц, второй – В условных единиц, третий – С условных единиц. Д, Е и К условных единиц, соответственно. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны Необходимо определить наиболее дешевый вариант перевозок, если транспортные расходы на одну условную единицу составляют: Поставщики Потребители 1 2 3 1 7 9 11 2 4 5 8 3 6 7 12 В проц
User vlanproekt : 25 января 2014
290 руб.
up Наверх