Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Дополнительная информация
Оценка: Зачет
Дата оценки: 30.12.2023
Дата оценки: 30.12.2023
Похожие материалы
Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
IT-STUDHELP
: 30 декабря 2021
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
900 руб.
Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
IT-STUDHELP
: 30 декабря 2021
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
600 руб.
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 03
JulDir
: 4 февраля 2012
Постановка задачи
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
М1[4x2], M2[2x7], M3[7x5], М4[5x6], M5[6x7], M6[7x9], M7[9x4], M8[4x2].
49 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 1. Вариант 03
wchg
: 15 октября 2013
Цель работы: Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Метод “пузырьковой” сортировки.
Массив для сортировки:
292, 334, 172, 615, 45, 212, 136, 401, 274, 167, 566, 807, 495, 817, 457, 103, 309, 156, 480, 877, 528, 367, 967, 618, 547, 903, 258, 172, 33, 79, 601, 902, 199, 654, 11, 693, 233, 150, 774, 1
80 руб.
Лабораторная работа № 3 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по посл
23 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 8 билет
Владислав161
: 5 октября 2023
Экзамен
По дисциплине “Теория сложности вычислительных процессов и структур”
400 руб.
Другие работы
ИГ.04.23.01 - Пластина. Нанесение размеров
Чертежи СибГАУ им. Решетнева
: 24 октября 2021
Все выполнено в программе КОМПАС 3D v16
Вариант 23 ИГ.04.23.01 - Пластина
Вычертить контур детали, нанести размеры согласно ГОСТ 2.307-2011. Толщина детали 2мм.
В состав работы входят два файла:
- чертеж формата А3 перечерченного контура с проставленными размерами, разрешение файла *.cdw (для открытия требуется программа компас не ниже 16 версии);
- аналогичный чертеж, пересохранённый как картинка в формат *.jpg
80 руб.
Задание 10. Вариант 17 - Точки
Чертежи по сборнику Боголюбова 2007
: 27 марта 2023
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007.
Задание 10. Вариант 17 - Точки
Построить наглядное изображение и комплексный чертеж точек А и В. Определить положение точек относительно плоскостей проекций.
В состав выполненной работы входят 2 файла:
1. Чертеж формата А4, выполненный
50 руб.
Проект АТП с разработкой агрегатного участка
proekt-sto
: 29 июня 2023
Пояснительная записка содержит 40 страниц, в том числе, 16 таблиц, 6 источников. Графическая часть представлена на 2 листах формата А1.
В данном проекте изложены основные положения и произведен расчет производственной программы, объема работ и численности рабочих АТП, технологический расчет производственных зон, участков и складов. Был разработан агрегатный участок. Графическая часть представлена на двух листах:
1 лист – технологическая планировка производственного корпуса
2 лист – технологичес
250 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 1.19 Вариант б
Z24
: 3 октября 2025
В закрытом баке, заполненном бензином, установлено три прибора для регистрации давления: пружинный манометр, учитывающий давление на поверхности бензина, U-образный манометр, заполненный ртутью и водой, и пьезометр, выведенный у дна резервуара (рис. 1.19).
В установке предусмотрен уровнемер в виде закрытой стеклянной трубки для отсчета значений Н, h, a.
Определить показание манометра (рман в ат) и высоту уровня бензина в пьезометре hp, если высота столба воды hв, показание U-образного рту
150 руб.