Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Дополнительная информация
Оценка: Зачет
Дата оценки: 30.12.2023
Дата оценки: 30.12.2023
Похожие материалы
Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
IT-STUDHELP
: 30 декабря 2021
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
900 руб.
Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
IT-STUDHELP
: 30 декабря 2021
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
600 руб.
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 03
JulDir
: 4 февраля 2012
Постановка задачи
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
М1[4x2], M2[2x7], M3[7x5], М4[5x6], M5[6x7], M6[7x9], M7[9x4], M8[4x2].
49 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 1. Вариант 03
wchg
: 15 октября 2013
Цель работы: Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Метод “пузырьковой” сортировки.
Массив для сортировки:
292, 334, 172, 615, 45, 212, 136, 401, 274, 167, 566, 807, 495, 817, 457, 103, 309, 156, 480, 877, 528, 367, 967, 618, 547, 903, 258, 172, 33, 79, 601, 902, 199, 654, 11, 693, 233, 150, 774, 1
80 руб.
Лабораторная работа № 3 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по посл
23 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 8 билет
Владислав161
: 5 октября 2023
Экзамен
По дисциплине “Теория сложности вычислительных процессов и структур”
400 руб.
Другие работы
Корпус в сборе. Задание №12
lepris
: 23 сентября 2021
Корпус в сборе. Задание 12
Сборочная единица "Корпус в сборе" содержит три детали. Втулка 2 крепится к корпусу 1 тремя винтами 4 М8х35 ГОСТ 1491-80. Пробка 3 ввинчивается во втулку заподлицо.
Требуется:
а) Выполнить сборочный чертеж узла на формате А3 в масштабе 1:1.
Чертеж должен содержать главный вид с разрезом, вид сверху и вид слева.
б) Составить спецификацию сборочной единицы.
в) выполнить 3d модель сборочной единицы.
Корпус в сборе сборочный чертеж
Корпус в сборе спецификация
Корпус в
500 руб.
Теплотехника Часть 1 Теплопередача Задача 19 Вариант 7
Z24
: 14 октября 2025
Трубопровод диаметром d1=150 мм, имеющий температуру поверхности t1 и степень черноты ε=0,75, окружен цилиндрическим экраном диаметром d2, обе поверхности которого имеют степень черноты εэ.
Определить потери тепла излучением на 1 пог. м трубопровода при температуре окружающей среды t2=27 ºC, приняв ее поглощательную способность равной единице. На сколько процентов будут больше указанные потери при тех же условиях для трубопровода без экрана?
180 руб.
«Направленность и мотивы деятельности личности»
VMAVAA
: 3 февраля 2014
«Направленность и мотивы деятельности личности»
СИНЕРГИЯ Логика Тест 93 балла 2024 год
Synergy2098
: 15 октября 2024
СИНЕРГИЯ Логика (Темы 1-8 Итоговый и Компетентностный тесты)
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО
2024 год
Ответы на 94 вопроса
Результат – 93 балла
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
УЧЕБНЫЕ МАТЕРИАЛЫ
Текущие
Введение в курс
Тема 1. Предмет и значение логики
Тема 2. Логика и язык
Тема 3. Понятие и его роль в мышлении
Тема 4. Определение
Тема 5. Суждение как форма мысли
Тема 6. Умозаключение. Дедуктивные умозаключения
Тема 7. Индуктивные умозаключени
228 руб.