Курсовая работа по дисциплине «Вычислительная математика»
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Теоретическая часть:
Метод Рунге-Кутта
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение 1-го порядка в качестве неизвестных величин входят функция y(x) и ее первая производная по аргументу x
Один из наиболее распространенных методов численного решения дифференциального уравнения – методы Рунге-Кутта. Методы Рунге-Кутта обладают следующими свойствами:
1 Эти методы являются одноступенчатыми: чтобы найти уm+1 нужна информация о предыдущей точке xmym
2 Они согласуются с рядом Тейлора вплоть до членов порядка hp где степень р различна для различных методов и называется порядковым номером или порядком метода
3 Они не требуют вычисления производных от f (xy) а требуют вычисления самой функции
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Теоретическая часть:
Метод Рунге-Кутта
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение 1-го порядка в качестве неизвестных величин входят функция y(x) и ее первая производная по аргументу x
Один из наиболее распространенных методов численного решения дифференциального уравнения – методы Рунге-Кутта. Методы Рунге-Кутта обладают следующими свойствами:
1 Эти методы являются одноступенчатыми: чтобы найти уm+1 нужна информация о предыдущей точке xmym
2 Они согласуются с рядом Тейлора вплоть до членов порядка hp где степень р различна для различных методов и называется порядковым номером или порядком метода
3 Они не требуют вычисления производных от f (xy) а требуют вычисления самой функции
Дополнительная информация
Вариант №2
Могу выполнить любой вариант !
Могу выполнить любой вариант !
Похожие материалы
Курсовая работа по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Курсовая работа по дисциплине Вычислительная математика Вариант 1
400 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика»
vohmin
: 3 июня 2018
Задание:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождени
50 руб.
Курсовая работа по дисциплине «Вычислительная математика»
m9c1k
: 22 июня 2010
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пе
250 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант 4
Roma967
: 11 января 2025
* Вариант 4, фамилия начинается на СОГЛАСНУЮ букву (метод хорд), а имя - на ГЛАСНУЮ (метод Симпсона)
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительн
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант 2
SibGOODy
: 22 августа 2024
Задание для курсовой работы
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант 3
xtrail
: 22 июля 2024
* Вариант 3, фамилия начинается на СОГЛАСНУЮ букву (метод хорд); имя начинается на СОГЛАСНУЮ букву (метод трапеций) *
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наиме
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант 5
xtrail
: 22 июля 2024
* Вариант 5, фамилия начинается на СОГЛАСНУЮ букву (метод хорд); имя начинается на СОГЛАСНУЮ букву (метод трапеций) *
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наиме
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №04
IT-STUDHELP
: 7 октября 2023
Вариант №04
Задание:
1. Найти аналитически интервалы изоляции действительных корней заданного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси. Убедитесь, что вторая производная сохраняет знаки на каждом интервале изоляции, в противном случае уменьшите длину интервала.
2. Написать программу нахождения наименьшего действительного корня нелинейного уравнения с точностью 0.0001 тремя методами:
а) методом деления пополам;
б
500 руб.
Другие работы
Проектирование привода с конически-цилиндрическим редуктором
elementpio
: 26 сентября 2012
Содержание
1.Кинетический расчет. 2
2. Расчет конической передачи 3
3.Предварительный расчет валов. 6
4.Конструктивные размеры зубчатых колес. 7
5.Конструктивные размеры корпуса редуктора. 7
6.Первый этап компоновки редуктора. 7
7.Проверка долговечности подшипников. 8
8.Второй этап компановки редуктора. 11
9.Прочность шпонечных соединений. 12
10.Уточненный расчет промежуточного вала. 12
11.Посадка деталей редуктора. 13
12.Смазка зубчатых зацеплений и подшипников. 13
13.Сборка редуктора. 14
ЛИТЕР
30 руб.
Детский спортивный комплекс
ostah
: 15 марта 2015
Генеральный план
Участок имеет прямоугольную форму, размеры в плане 30х25 (м). К основным ветрам здание расположено под углом 45о. Разрыв с существующими зданиями – в соответствии с противопожарными и санитарными нормами. Здание расположено таким образом, чтобы центральные входы в спортивный центр находились со стороны улицы Проспекта Ленина.
1. Общий раздел
1.1. Обоснование целесообразности строительства объекта
1.2. Характеристика района и площадки строительства
1.3. Технико-экономическое о
Теплотехника Часть 1 Теплопередача Задача 24 Вариант 1
Z24
: 14 октября 2025
Определить требуемую площадь теплообменной поверхности охладителя надувочного дизеля на основании следующих данных:
— температура воздуха на входе в охладитель t′в=115 ºС;
— температура воздуха на выходе из охладителя t″в=65 ºС;
— расход воздуха Gв;
— температура охлаждающей воды на входе в охладитель t′ω;
— расход охлаждающей воды Gω=1,25 кг/c;
— коэффициент теплопередачи k=100 Вт/(м²·К).
Схемы движения теплоносителей:
а) противоточная;
б) прямоточная.
200 руб.
Экономико математические методы и модели в связи
ib89
: 15 сентября 2013
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров/
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования
150 руб.