Теория вероятностей.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет № 12
1. Распределение Пуассона и его характеристики
2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну семерку»?
3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу.
4. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,04.
5. Дана функция распределения непрерывной случайной величины X:
Найти коэффициент С, плотность f(x) , построить кривые функции и плотности распределения. Найти математическое ожидание и среднее квадратическое отклонение случайной величины Х.
1. Распределение Пуассона и его характеристики
2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну семерку»?
3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу.
4. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,04.
5. Дана функция распределения непрерывной случайной величины X:
Найти коэффициент С, плотность f(x) , построить кривые функции и плотности распределения. Найти математическое ожидание и среднее квадратическое отклонение случайной величины Х.
Дополнительная информация
2011г., оценка хорошо
Похожие материалы
Теория вероятностей
Aleksey0697
: 19 марта 2019
Вариант 5. Из 8 карточек с буквами А, Б, В, Г, Д, Е, Ж, З наугад берут три карточки и расставляют в случайном порядке. Найти вероятность того, что получится слово ГАЗ.
Вариант 5. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки - с вероятностью 0,7, третьей - с вероятностью 0,85. а) Найти вероятность того, что произвольный автомобиль автопарка исправен. б) Найти вероятность того, что исправный автомобиль является третьей м
50 руб.
Теория вероятности
Mikola456
: 27 мая 2016
Задание 3.
В партии из 6 изделий содержится 3 бракованных. Контролер проверяет изделия последовательно по одному до тех пор, пока не появляется бракованное. Тогда вся партия возвращается изготовителю. Найти ряд распределения этой случайной величины, математическое ожидание, дисперсию и СКО, а также вероятность того, что число проверенных изделий будет больше двух.
Задание 4.
Непрерывная случайная величина задана функцией распределения:
Найти параметр С, плотность распределения, математическое
500 руб.
Теория вероятностей
татьяна89
: 3 февраля 2011
Задача 10. 8. вариант 8
Вероятность хотя бы одного попадания при двух выстрелах равна 0,99. Найти вероятность четырех попаданий при пяти выстрелах.
Задача 11.8. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаний.
Задача 12.8.
требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины Х по заданному закону ее распределения, заданному т
55 руб.
Теория Вероятностей.
dimanis
: 21 января 2011
Билет № 19
1. Моменты распределения и другие числовые характеристики случайной величины.
2. График плотности распределения случайной величины X имеет вид:
Найти интегральную функцию и вероятность попадания X на отрезок [0;2].
3. В группе 2 человека сдали экзамен на «5», 6 человек – на «4», 12 – на «3», 3 – на «2». Найти вероятность того, что случайно взятый человек сдал экзамен на «4» или «5».
4. По каналу связи передается кодовая комбинация из 5 символов. Вероятность искажения одного символа
50 руб.
Теория вероятности
1231233
: 17 сентября 2010
Вариант №8
Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Текст 2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Текст 3. В типографии имеется K печатных маши
23 руб.
Теория вероятности
BOND
: 9 февраля 2010
Экзамен. билет №15 сесместр 4 СИБГУТИ
1. Дискретная двумерная случайная величина и её распределение.
2. Интегральная функция распределения случайной величины X имеет вид:
Найти коэффициент А, плотность f(x) и вероятность попадания Х в интервал [1;2].
3. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что а) оба автобуса опоздают; б) хотя бы один автобус прибудет вовремя.
4. Пр
150 руб.
Теория вероятности
Один
: 8 декабря 2008
15 задач с решениями
Закон распределения F(xy)
Вариант №22
1) Три баскетболиста бросают мяч в корзину. Пусть событие А={мяч забросил 1-ый} В=2-ой, С=3-ий, D={Произошло не менее 2-х попаданий} и изобразить его диаграммой Вена.
2) В ящике находятся карточки с цифрами 1-9, которые вынимаются наугад и располагаются в порядке появления. Какова вероятность того, что цифры 4 и 5 окажутся рядом?
3) На отрезок [0;6] случайно бросают две точки. Найти вероятность того, что расстояние их от концов не
Задачи по теории вероятностей
LanaT
: 16 февраля 2018
Задачи на умножения вероятностей зависимых событий, на применения формул Байеса и Бернулли. Нахождение закона распределения случайной величины.
Другие работы
Место и роль информационной безопасности в различных сферах жизнедеятельности личности/общества/государства). Аналитический обзор.
bap2
: 2 февраля 2016
Содержание:
1.Информатизация общества и проблема информационной безопасности 3
2.Основные цели и объекты информационной безопасности страны 5
3.Источники угроз для информационной безопасности 6
4.Основные задачи обеспечения информационной безопасности 10
оценка:зачет
200 руб.
Лабораторная работа № 1 по предмету "Структуры и алгоритмы обработки данных. Часть 2. Древовидные структуры данных" Тема: Построение двоичного дерева. Вычисление характеристик дерева.
xtrail
: 19 апреля 2013
Задание
Тема: Построение двоичного дерева. Вычисление характеристик дерева.
Цель работы: Освоить понятие двоичного дерева.
Порядок выполнения работы:
1. Разместить в памяти компьютера данное двоичное дерево, данные в вершинах заполнить случайными числами.
2. Написать процедуры для вычисления размера дерева, высоты дерева, средней высоты дерева, контрольной суммы для дерева и проверить их работу на конкретном примере.
3. Запрограммировать обход двоичного дерева слева направо и вывести на эк
250 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 2 Вариант 06
Z24
: 14 декабря 2025
Продукты сгорания из печи установки гидроочистки в количестве G1 при температуре T1 и постоянном давлении нагревают водородосодержащий газ (ВСГ) от температуры t1 до t2. Температура продуктов сгорания на выходе из теплообменного аппарата Т2. Массовый состав продуктов сгорания и ВСГ представлен в таблице 4.
Определить:
— секундный расход ВСГ;
— количество теплоты, переданное продуктами сгорания ВСГ;
— изменение внутренней энергии продуктов сгорания и ВСГ в процессе теплообмена;
— т
180 руб.
Контрольная работа по ТВ и мат.статистике. 14-й вариант
ru0lr
: 13 февраля 2014
Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Решение:
p=0,7, k=5
Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Решение:
K = 5, L=2, M=4, N=4, P=3, R=4
50 руб.