Теория Вероятностей.

Цена:
50 руб.

Состав работы

material.view.file_icon
material.view.file_icon Теория_Вероятностей_Билет_19.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет № 19
1. Моменты распределения и другие числовые характеристики случайной величины.
2. График плотности распределения случайной величины X имеет вид:
Найти интегральную функцию и вероятность попадания X на отрезок [0;2].
3. В группе 2 человека сдали экзамен на «5», 6 человек – на «4», 12 – на «3», 3 – на «2». Найти вероятность того, что случайно взятый человек сдал экзамен на «4» или «5».
4. По каналу связи передается кодовая комбинация из 5 символов. Вероятность искажения одного символа при приёме – 0,1. Найти вероятность того, что хотя бы один символ будет искажен.
5. Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятность того, что за 3 ч поступит: а) 6 заявок; б) менее шести заявок; в) не менее шести заявок.

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика
Вид работы: Экзамен
Оценка:Хорошо
Дата оценки: *.*.2011
Рецензия:Уважаемый * * Александрович,
Ваша работа выполнена хорошо, существенных замечаний нет.
Агульник Владимир Игоревич
Теория вероятностей
Вариант 5. Из 8 карточек с буквами А, Б, В, Г, Д, Е, Ж, З наугад берут три карточки и расставляют в случайном порядке. Найти вероятность того, что получится слово ГАЗ. Вариант 5. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки - с вероятностью 0,7, третьей - с вероятностью 0,85. а) Найти вероятность того, что произвольный автомобиль автопарка исправен. б) Найти вероятность того, что исправный автомобиль является третьей м
User Aleksey0697 : 19 марта 2019
50 руб.
Теория вероятности
Задание 3. В партии из 6 изделий содержится 3 бракованных. Контролер проверяет изделия последовательно по одному до тех пор, пока не появляется бракованное. Тогда вся партия возвращается изготовителю. Найти ряд распределения этой случайной величины, математическое ожидание, дисперсию и СКО, а также вероятность того, что число проверенных изделий будет больше двух. Задание 4. Непрерывная случайная величина задана функцией распределения: Найти параметр С, плотность распределения, математическое
User Mikola456 : 27 мая 2016
500 руб.
Теория вероятностей
Задача 10. 8. вариант 8 Вероятность хотя бы одного попадания при двух выстрелах равна 0,99. Найти вероятность четырех попаданий при пяти выстрелах. Задача 11.8. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаний. Задача 12.8. требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины Х по заданному закону ее распределения, заданному т
User татьяна89 : 3 февраля 2011
55 руб.
Теория вероятностей.
Билет № 12 1. Распределение Пуассона и его характеристики 2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну семерку»? 3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу. 4. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужн
User татьяна89 : 20 января 2011
50 руб.
Теория вероятности
Вариант №8 Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3 Текст 2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Текст 3. В типографии имеется K печатных маши
User 1231233 : 17 сентября 2010
23 руб.
Теория вероятности
Экзамен. билет №15 сесместр 4 СИБГУТИ 1. Дискретная двумерная случайная величина и её распределение. 2. Интегральная функция распределения случайной величины X имеет вид: Найти коэффициент А, плотность f(x) и вероятность попадания Х в интервал [1;2]. 3. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что а) оба автобуса опоздают; б) хотя бы один автобус прибудет вовремя. 4. Пр
User BOND : 9 февраля 2010
150 руб.
Теория вероятности
15 задач с решениями Закон распределения F(xy) Вариант №22 1) Три баскетболиста бросают мяч в корзину. Пусть событие А={мяч забросил 1-ый} В=2-ой, С=3-ий, D={Произошло не менее 2-х попаданий} и изобразить его диаграммой Вена. 2) В ящике находятся карточки с цифрами 1-9, которые вынимаются наугад и располагаются в порядке появления. Какова вероятность того, что цифры 4 и 5 окажутся рядом? 3) На отрезок [0;6] случайно бросают две точки. Найти вероятность того, что расстояние их от концов не
User Один : 8 декабря 2008
Задачи по теории вероятностей
Задачи на умножения вероятностей зависимых событий, на применения формул Байеса и Бернулли. Нахождение закона распределения случайной величины.
User LanaT : 16 февраля 2018
Катодная защита газопровода-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
Катодная защита газопровода-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
400 руб.
Катодная защита газопровода-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
Задачи линейного программирования. Алгоритм Флойда
He умаляя общности, можно считать, что в системе (2) первые т ограничений являются неравенствами, а последующие — l-уравнениями. Очевидно, этого всегда можно добиться за счет простого переупорядочения ограничений. Относительно направления знака неравенства будем предполагать, что левая часть меньше или равна правой. Добиться этого можно, умножив на (-1) обе части тех неравенств, которые имеют противоположный знак. Ограничения (3), вообще говоря, могут быть рассмотрены как частный случай ограниче
User evelin : 6 октября 2013
5 руб.
Выпускная квалификационная работа. Исследование и анализ шифра ГОСТ Р34.12-2015 (Кузнечик)
Исследование и анализ шифра ГОСТ Р34.12-2015 (Кузнечик) Выпускная квалификационная работа. В девяностых годах прошлого века началось активное внедрение информационных-телекоммуникационных технологий в деятельность коммерческих и государственных организаций. Это привело к необходимости использования средств криптографической защиты информации для обеспечения безопасности передаваемых данных. В основе информационной криптографической защиты лежат алгоритмы, при помощи которых строятся протоколы и
User const30 : 26 августа 2018
1400 руб.
Инженерная графика. Задание №64. Вариант №5. Задача №1. Крышка
Все выполнено в программе КОМПАС 3D v16. Боголюбов С.К. Индивидуальные задания по курсу черчения. Задание 64. Вариант 5. Задача 1. Крышка В данной задаче необходимо выполнить простой разрез на главном виде детали, совместив половину вида и половину разреза. Не смотря на это, во многих ВУЗах данную задачу делают не по заданию оригинала, а в трёх видах и с изометрией детали с четвертью выреза, поэтому дополнительно было сделано и так. В состав работы входят пять файлов: - 3D модель детали; -
User Чертежи : 28 апреля 2021
85 руб.
Инженерная графика. Задание №64. Вариант №5. Задача №1. Крышка
up Наверх