Вычислительная математика. Лабораторная работа 4. Численное дифференцирование. Вариант 7
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие ,
(e – заданная точность), при этом
Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси.
(e – заданная точность), при этом
Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси.
Дополнительная информация
Вариант 7
Преподаватель: Галкина Марина Юрьевна
Оценка: зачёт
Год сдачи: 2011
Преподаватель: Галкина Марина Юрьевна
Оценка: зачёт
Год сдачи: 2011
Похожие материалы
Вычислительная математика. Лабораторная работа № 4. Численное дифференцирование. Вариант №9
nik200511
: 9 декабря 2013
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: .
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в
25 руб.
СибГУТИ. Вычислительная математика. Лабораторная работа № 4. 4 вариант. Численное дифференцирование
РешуВашуРаботу
: 12 октября 2011
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет знач
400 руб.
Лабораторная работа №4 по дисциплине: Вычислительная математика. Тема: Численное дифференцирование. Вариант №2
Roma967
: 31 мая 2015
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения
250 руб.
Вычислительная математика. 3-й семестр. Лабораторная работа №4. Численное дифференцирование. Вариант №4
Udacha2013
: 18 апреля 2014
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c +
200 руб.
Исследование точности численного дифференцирования
Lokard
: 9 октября 2013
Относительную погрешность определяйте относительно максимального значения функции на интервале, абсолютную погрешность рассчитайте относительно значений аналитически вычисленной производной.
Численное дифференцирование применяется, если функцию y(x) трудно или невозможно продифференцировать аналитически – например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
При численном дифференцировании функцию y(x) аппроксимируют легко выч
10 руб.
Лабораторная работа №4. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет зна
200 руб.
Лабораторная работа № 4 по дисциплине: Вычислительная математика. Вариант №7
Jack
: 28 ноября 2014
Лабораторная работа № 4
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: .
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблиц
250 руб.
Лабораторная работа № 4 по дисциплине: Вычислительная математика., Вариант № 7
GTV8
: 9 сентября 2012
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения
100 руб.
Другие работы
Лабораторная работа №2 по дисциплине: Человеко-машинное взаимодействие. Вариант №6
SibGOODy
: 28 августа 2018
Задание
2.1. Изучить работу программы, заданной по вариантам, дать ее краткое описание. Провести CWT-анализ интерфейса программы, рассмотрев все репрезентативные задачи (если задач больше 3-х, то рассмотреть только 3). Отчёт об анализе должен содержать формулировку репрезентативных задач, описание последовательности действий, анализ этих действий и список проблем и путей их устранения.
Вариант 6: «Графический редактор»
250 руб.
Дискретная математика. Лабораторная работа №2
Bodibilder
: 14 марта 2019
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
15 руб.
Контрольная работа по дисциплине: Мультисервисные сети связи (часть 1). Вариант 15
Roma967
: 23 августа 2020
Контрольная работа
«Архитектура протоколов транспортной мультисервисной сети»
Задание №1
Назначение и состав компонентов Softswitch.
Задание №2
1. Отобразить на рисунке те элементы сети (рис.2.1), которые включены в Ваш маршрут, согласно Вашему варианту из табл.2
2. Отобразить на этом же рисунке профили протоколов (плоскость C или U) для всех элементов сети, входящих в Ваш маршрут, согласно Вашему варианту из табл.2
В таблице 2 приведены варианты маршрутов в сети рис.2.1, по которым Вам надо о
900 руб.
Геоморфология
OstVER
: 17 сентября 2012
Краткие конспекты леций по геоморфологии. С пояснительными схемами.
Предмет геоморфологии. Представление о вещественности рельефа земной поверхности.
Геоморфология, как самостоятельная наука. Основные разделы геоморфологии и её взаимосвязи с другими науками.
Место и значение учения о морфологии рельефа земной поверхности в геоморфологии. Морфодинамическая концепция.
Проблема элементаризации земной поверхности. Дискретность и континуальность рельефа земной поверхности. Представление об элементах