Экзамен по дисциплине: Дискретная математика. Билет№3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет 3
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
Дополнительная информация
Год сдачи 2011.
Работа сдана.
Есть замечания по третьему вопросу.
Работа сдана.
Есть замечания по третьему вопросу.
Похожие материалы
Экзамен по дисциплине: Дискретная математика. Билет №3
IT-STUDHELP
: 29 января 2017
Билет № 3
1) Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность) – дать определение и изобразить графически.
2) Понятие нормальных форм. Формулировка и использование теоремы о разложении булевой функции по k переменным.
3) Определить, сколько рациональных членов содержится в разложении
4) Построить матрицу весов и найти (с пояснениями) кратчайшие расстояния между всеми парами вершин заданного графа:
310 руб.
Экзамен по дисциплине: Дискретная математика. Билет №3
Елена22
: 28 февраля 2016
1. Проверить, является ли тавтологией формула (см. скрин):
2. Применяя равносильные преобразования, привести булеву функцию (см. скрин) к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения. (см. скрин)
300 руб.
Экзамен по дисциплине: Дискретная математика. Билет №3. Семестр №3
58197
: 22 сентября 2013
Билет № 3
Факультет А Э С Курс 2 Семестр 3
Дисциплина Дискретная математика
1. Проверить, является ли тавтологией формула:
((avb)&c)->(avb)
2. Применяя равносильные преобразования привести булеву функцию
f=(xvy)(yvz)->(xvz) к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
y(t)=x(t-1)->x(t), t>=2, y(1)=1
50 руб.
Экзамен по дисциплине: Дискретная математика семестр 3 билет 3
glec
: 26 января 2013
семестр 3-й
Билет 3
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
70 руб.
Экзамен по дисциплине «Дискретная математика» 2 семестр Билет № 3
mastar
: 23 января 2012
1. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность) – дать определение и изобразить графически.
2. Понятие нормальных форм. Формулировка и использование теоремы о разложении булевой функции по k переменным.
3. Определить, сколько рациональных членов содержится в разложении
4. Построить матрицу весов и найти (с пояснениями) кратчайшие расстояния между всеми парами вершин заданного графа:
125 руб.
Дискретная математика. Билет №3
m16devil
: 11 июня 2019
Билет № 3
Дисциплина Дискретная математика
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
30 руб.
Экзамен по дисциплине: «Дискретная математика»
Мария114
: 24 мая 2017
1. Индикаторная функция множества.
2. Заданы универсальное множество U и три его подмножества A, B, C. Проверить (доказать или опровергнуть) справедливость соотношения: .
3. Задано бинарное отношение , где . Определить, выполняются ли для данного отношения свойства транзитивности и антирефлексивности. Ответ обосновать.
4. Упростив логическую функцию двух переменных , проверить ее самодвойственность, монотонность и линейность. Ответ обосновать.
5. В корзине 10 красных и 8 зеленых яблок. Вы
100 руб.
ЭКЗАМЕН по дисциплине: «Дискретная математика»
fulger
: 10 декабря 2015
Билет № 2
Дисциплина Дискретная математика
1. Проверить, является ли тавтологией формула:
2. Применяя равносильные преобразования привести булеву функцию к минимальной ДНФ.
3. Построить конечный детерминированный автомат, минимизировать его, записать канонические уравнения.
50 руб.
Другие работы
Экономические проблемы Иркутской области
alfFRED
: 24 сентября 2013
Иркутская область – достаточно типичный регион Азиатской России. Область удалена от основных мест концентрации промышленного производства и населения, находящихся в европейской части России. Развитые зарубежные страны и на западе, и на востоке находятся на большом удалении и не имеют непосредственных границ с областью. На севере и на юге слабозаселенные и неосвоенные территории дают мало возможностей для развития экономических связей. Область может служить связующим звеном между странами Запада
10 руб.
Объектно-ориентированное программирование
Mikola456
: 27 мая 2016
Курсовая работа на тему "Морской бой"
700 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №17
alru
: 22 сентября 2016
1. Математическое ожидание случайной величины , дисперсия и среднее квадратическое отклонение и их свойства. Моменты распределения и другие числовые характеристики одномерной случайной величины
2. Из урны, где находятся 2 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 4 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
4. Непрерывная случайная величина имеет плотность распределения
5. Двумерная дискретная случайная
100 руб.
Критерии и показатели природоохранной деятельности
Elfa254
: 19 ноября 2013
Взаимосвязь экологических проблем с хозяйственной деятельностью экономических субъектов на сегодняшний день является очевидной. Затраты на природоохранные мероприятия ведут к увеличению издержек производства, что, в свою очередь, вступает в противоречие с одной из традиционных задач экономики – снижением себестоимости продукции. Однако игнорирование природоохранных целей и экономия на экологических затратах ведет к ухудшению качества природной среды и обусловливает увеличение вторичных издержек
5 руб.