Экзамен по дисциплине: Теория вычислительных процессов

Цена:
23 руб.

Состав работы

material.view.file_icon
material.view.file_icon 0893_3.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Базис класса стандартных схем программ, их графовая и линейная формы.
2. Параллельные процессы. Законы взаимодействия. Законы параллелизма. Протоколы.
Процесс определяется полным описанием его потенциального поведения. При этом часто имеется выбор между несколькими различными действиями. В каждом таком случае выбор того, какое из событий произойдет в действительности, может зависеть от окружения, в котором работает процесс. Само окружение процесса может быть описано как процесс, поведение которого определяется в уже знакомых терминах. Это позволяет исследовать поведение целой системы, состоящей из процесса и его окружения, взаимодействующих по мере их параллельного исполнения. Всю систему также следует рассматривать как процесс, поведение которого определяется в терминах поведения составляющих его процессов. Эта система в свою очередь может быть помещена в еще более широкое окружение, и т.д.

Дополнительная информация

Билет № 3
Экзамен по дисциплине «Теория вычислительных процессов» 5 семестр Билет № 16
Билет № 16 1. Методы доказательства правильности программ. Как известно, универсальные вычислительные машины могут быть запрограммированы для решения самых разнородных задач. В этом заключается одна из основных их особенностей, имеющая огромную практическую ценность. Один и тот же компьютер, в зависимости от того, какая программа находится у него в памяти, способен осуществлять арифметические вычисления, доказывать теоремы и редактировать тексты, управлять ходом эксперимента и создавать проект
User mastar : 5 октября 2012
125 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
User uliya5 : 14 апреля 2024
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Билет №4 1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User IT-STUDHELP : 20 апреля 2023
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4 promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №11
Контрольная работа по дисциплине: «Теория сложности вычислительных процессов и структур» Билет No11 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 3 6 7 5 0 3 0 2 3 2 0 6 2 0 7 4 1 7 3 7 0 1 5 5 2 4 1 0 4 0 0 1 5 4 0 2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×6],M2[6
User IT-STUDHELP : 5 декабря 2022
380 руб.
promo
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
Билет №15 1. Оптимальным образом расставить скобки при перемножении следующих матриц: . 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
User teacher-sib : 30 апреля 2021
250 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15. promo
Проектирование здания с ж/б перекрытиями
1. ВКАЗІВКИ ДО КОМПОНОВКИ МІЖПОВЕРХОВОГО ПЕРЕКРИТТЯ 2. КОНСТРУКТИВНА СХЕМА ПЕРЕКРИТТЯ 3. ПОПЕРЕДНЄ ВИЗНАЧЕННЯ ТОВЩИНИ ПЛИТИ І РОЗМІРІВ ПОПЕРЕЧНОГО ПЕРЕРІЗУ БАЛОК 4. РОЗРАХУНОК ТА КОНСТРУЮВАННЯ ПЛИТИ 5. РОЗРАХУНОК ТА КОНСТРУЮВАННЯ ДРУГОРЯДНОЇ БАЛКИ 6. РОЗРАХУНОК ТА КОНСТРУЮВАННЯ КОЛОНИ 7. РОЗРАХУНОК ТА КОНСТРУЮВАННЯ ФУНДАМЕНТУ ВИКОРИСТАНА ЛІТЕРАТУРА
User Рики-Тики-Та : 11 ноября 2011
55 руб.
Экзамен по математическому анализу .2-й семестр, билет № 5
БИЛЕТ № 5 1.Вычисление тройного интеграла в декартовой и цилиндрической системе координат. 2.Найти градиент функции в точке 3.Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. 4.Найти общее решение дифференциального уравнения 5.Найти частное решение уравнения 6.Разложить функцию в ряд Фурье: при 7.Найти область сходимости степенного ряда:
User saharok : 19 марта 2013
50 руб.
Контрольная работа по дисциплине: Теория телетрафика. Задача №6
Задача №6. На коммутационную систему поступает поток вызовов, создающий нагрузку 4,5 эрланга. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ... N) при примитивном потоке от 10 источников и Pi (i=0,1, 2... j) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f(i) и произвести сравнение полученных результатов.
User Елена22 : 17 апреля 2022
100 руб.
promo
Что я понимаю под «информационными ресурсами». Эссе. 2015.
Эссе на тему «Что я понимаю под «информационными ресурсами»». 2015. 6 страниц. Написано и сдано в 2015 году на отлично. Оригинальное написание. Все работы проверены системой антиплагиат.ру. Написаны профессиональным автором студенческих работ в 2015 году. Все интересующие вопросы вы можете задать автору данной работы посредством комментария либо личным сообщением. Работа представлена в файле microsoft windows "doc" или "docx".
User studypro : 27 июля 2015
70 руб.
up Наверх