Экзаменационная работа по дисциплине: Математический анализ (2 сем). Билет № 2
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1.Частные производные и полный дифференциал функции многих переменных, их геометрический смысл
2.Вычислить объём тела, ограниченного поверхностями
3.Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4.Вычислить поток векторного поля через поверхность G: , .
5.Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
2.Вычислить объём тела, ограниченного поверхностями
3.Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4.Вычислить поток векторного поля через поверхность G: , .
5.Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
Дополнительная информация
Ваша работа выполнена хорошо, существенных замечаний нет. Оценка:Хорошо
Агульник Владимир Игоревич
весна 2012
Агульник Владимир Игоревич
весна 2012
Похожие материалы
Экзаменационная работа по дисциплине: Математический анализ (2 сем.). Билет №9
SybNet
: 22 сентября 2012
Экзамен по предмету Математический анализ 2 семестр 09 билет
СибГУТИ, Дистанционное обучение.
Вопрос №1: Скалярное поле, линии и поверхности уровня, производная по направлению.
Задача №2: Вычислить объём тела, ограниченного поверхностями
Задача №3: Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку .
Задача №4: Вычислить поток векторного поля через поверхность : , .
Задача №5: Применяя формулу Стокса, вычислить циркуляцию вект
100 руб.
Экзамен. Математический анализ (2 сем.) Билет №20
Vitaly1972
: 1 апреля 2014
Билет 20
1. Соленоидальное поле и его свойства. Примеры.
2. Вычислить объём тела, ограниченного поверхностями
3. Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4. Вычислить поток векторного поля через поверхность : , .
5. Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
200 руб.
Экзамен по математическому анализу (2 сем) билет №12
ramzes14
: 26 сентября 2012
Билет 12
1. Поток векторного поля, его вычисление и свойства.
2. Вычислить объём тела, ограниченного поверхностями
3. Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4. Вычислить поток векторного поля через поверхность : , , , .
5. Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
200 руб.
Математический анализ. Экзамен. 2 сем. 16 билет
andrey555
: 17 ноября 2011
1. Применение степенных рядов к приближенным вычислениям.
2. Найти градиент функции в точке
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Определить, сходится ли данный ряд
5. Разложить функцию в ряд Фурье в интервале
6. Найти частное решение дифференциального уравнения при данном начальном условии
7. Найти частное решение дифференциального уравнения
200 руб.
Математический анализ. Финальная работа. (2 сем)
amfitech
: 3 апреля 2013
Математический анализ. Финальная работа. (2 сем)
1. Условия независимости криволинейного интеграла по координатам от пути интегрирования.
2. Вычислить объём тела, ограниченного поверхностями: x2+y2=8, y=sqrt(2x), z=15/11x, z=0
3. Вычислить градиент скалярного поля U=x2-2y в точке M(1,1) . Построить градиент и линию уровня поля, проходящую через точку М.
4. Вычислить поток векторного поля a=y2xi+z2yj+x2zk через поверхность x2+y2+z=8, x2+y2=z
5. Применяя формулу Стокса, вычислить циркуляцию
100 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №2
Roma967
: 18 августа 2019
Билет №2
1. Вычисление двойного интеграла в декартовой и в полярной системе координат.
2. Найти градиент функции z=f(x,y) в точке M(1;1):
z=x^(3)+y^(3)+3xy-8
3. Найти пределы двукратного интеграла в полярных координатах, если область интегрирования D есть круг: x^(2)+y^(2)=4y
4. Определить, сходится ли данный ряд (см. скрин).
5. Найти область сходимости степенного ряда (см. скрин).
6. Найти частное решение дифференциального уравнения при данном начальном условии y'-(y/x)=(2/x^(2), y(1)=1
650 руб.
Математический анализ. Экзамен., 2-й сем., Билет №3
Vasay2010
: 28 апреля 2015
1.Приложения двойного интеграла: площадь поверхности и объем тела.
2.Найти градиент функции z=f(x,y) в точке M(1;1) z=корень(x^2+y^2) - xy
3.Найти пределы двукратного интеграла в полярных координатах, если область D ограничена окружностью : x^2+y^2=2x и прямой y=x (y>0 ) .
4.Определить, сходится ли данный ряд, и если сходится, то абсолютно или условно E(-1)^n+1 (2n/(n^2+3))
5.Найти область сходимости степенного ряда : E(n!/5^n)*x^n
6.Найти общее решение дифференциального уравнения
(x+xy
35 руб.
Математический анализ. Экзамен. 2-й сем., Билет №11
Vasay2010
: 1 февраля 2013
Задача 1.
Абсолютная и условная сходимость числового ряда. Признак Лейбница.
Задача 2.
Найти градиент функции z=f(x,y) в точке M(1;1) z=x/(x^2+y^2).
Задача 3.
Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. .
dx f(x,y)dy
Задача 4.
Исследовать ряд на абсолютную сходимость (-1^n)/(1+n^2)
Задача 5.
Разложить функцию в ряд Фурье
Задача 6.
Найти частное решение уравнения y+cqrd(x^2+y^2)-xy'=0, y(1)=0
Задача 7.
Найти общее решение дифференциального уравнения 2y
59 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.