Экзамен по дисциплине "Теория сложностей вычислительных процессов и структур ". 5-й семестр. Билет № 12
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
Дополнительная информация
2012, ОТЛИЧНО
Похожие материалы
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
holm4enko87
: 15 мая 2025
илет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
270 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
uliya5
: 14 апреля 2024
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
IT-STUDHELP
: 20 апреля 2023
Билет №4
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №11
IT-STUDHELP
: 5 декабря 2022
Контрольная работа
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Билет No11
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 3 6 7 5 0
3 0 2 3 2 0
6 2 0 7 4 1
7 3 7 0 1 5
5 2 4 1 0 4
0 0 1 5 4 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×6],M2[6
380 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
teacher-sib
: 30 апреля 2021
Билет №15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: .
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
250 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15
IT-STUDHELP
: 7 января 2021
Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370
350 руб.
Другие работы
Экзаменационная работа по дисциплине: Производственный менеджмент. Билет №5
Учеба "Под ключ"
: 27 февраля 2017
Билет №5
1. Техническое обслуживание кабельных линий связи.
2. Построить сетевой график для следующих условий: комплекс работ состоит из шести работ, последовательность выполнения: вторая после первой, седьмая после шестой.
250 руб.
Участок топливной аппаратуры. Чертеж.
vjycnh
: 20 мая 2015
Планировочный чертеж. Участок топливной аппаратуры.
Формат А1. Выполнен в Компас 15.
20 руб.
Малый бизнес: зарубежный опыт и проблемы развития в экономике Республики Беларусь
GnobYTEL
: 4 ноября 2013
Автор работы подтверждает, что приведенный в ней расчетно-аналитический материал правильно и объективно отражает состояние исследуемого процесса, а все заимствованные их литературных и других источников теоретические, методологические и методические положения и концепции сопровождаются ссылками на их авторов.
Содержание
Введение
1. Малый бизнес и его роль в рыночной экономике
1.1 Общая характеристика малого бизнеса
1.2 Социально-экономическая роль малого бизнеса
2. Становление малого бизне
5 руб.
Ленточная сушилка
kostak
: 7 ноября 2009
НАЗНАЧЕНИЕ ЛЕНТОЧНОЙ СУШИЛКИ
Сушилка ленточная предназначена для сушки пастообразных фор-мующихся материалов с начальной влажностью не более 75%
Материалы, которые в процессе сушки рассыпаются в мелкий поро-шок, что приводит к их уносу, засорению и просыпанию через перфорационные отверстия в транспортной ленте, сушить не рекомендуется.
Климатическое исполнение и категория размещения сушилки УЧ по ГОСТ 15150-69.
Сушилка поставляется во взрывоопасном исполнении.
Сушилка позволяет осуществлять полн