Экзамен по дисциплине "Теория сложностей вычислительных процессов и структур ". 5-й семестр. Билет № 12
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11
3 14 40
Дополнительная информация
2012, ОТЛИЧНО
Похожие материалы
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
holm4enko87
: 15 мая 2025
илет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
270 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
uliya5
: 14 апреля 2024
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
IT-STUDHELP
: 20 апреля 2023
Билет №4
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №11
IT-STUDHELP
: 5 декабря 2022
Контрольная работа
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Билет No11
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 3 6 7 5 0
3 0 2 3 2 0
6 2 0 7 4 1
7 3 7 0 1 5
5 2 4 1 0 4
0 0 1 5 4 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×6],M2[6
380 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №15.
teacher-sib
: 30 апреля 2021
Билет №15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: .
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
250 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №15
IT-STUDHELP
: 7 января 2021
Билет No15
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×4],M2[4×8],M3[8×2],M4[2×6],M5[6×7].
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
070123
700652
000050
160063
255607
320370
350 руб.
Другие работы
Тепловой расчет двигателя Д-240
Neyron
: 24 декабря 2008
Полный тепловой расчет дизельного двигателя Д-240 (трактор Беларус)
Содержание
1 ЗАДАНИЕ И ИСХОДНЫЕ ДАННЫЕ РАСЧЕТА……………………………3
2 ТЕПЛОВОЙ РАСЧЕТ………………………………………………………….4
2.1 Выбор величины степени сжатия……………………………………………4
2.2 Параметры наполнения и очистки цилиндра……………………………….5
2.3 Параметры процесса сжатия………………………………………………….9
2.4 Процесс сгорания……………………………………………………………11
2.4.1 Термохимический расчет………………………………………………….11
2.4.2 Термодинамический расчет……………………………………………..14
2.5 Процессы расшире
10 руб.
Автоматизация учета основных средств в банке
Elfa254
: 5 марта 2013
.Предпроектное обследование объекта автоматизации 1.Описание
предметной области решаемой задачи2.Функции предметной области реализуемой задачи3.Организационно-экономическая сущность задачи 52.Разработка информационного обеспечения задачи 1.Описание входных документов2.Описание выходных документов3.Описание систем классификации и кодирования 93.Описание технологии и алгоритмов решения задачи и их машинная реализация 1.Описание технологии ввода в базу данных входной информации задачи 2.Обобщенный
15 руб.
Проекционное черчение. Вариант 7. Задача 2
coolns
: 29 сентября 2023
Проекционное черчение. Вариант 7. Задача 2
Задача 2
1. По двум видам построить третий.
2. Нанести размеры по ГОСТ 2.307-2011.
3. Выполнить простые разрезы по ГОСТ 2.305-2008.
4. Построить изометрическую проекцию.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помо
100 руб.
Контрольная работа по дисциплине: Антенно-фидерные устройства сверхвысоких частот. Вариант 01
SibGOODy
: 13 декабря 2018
Задача № 1 (варианты 00 – 59)
Линейная антенная решетка состоит из n ненаправленных (изотропных) излучателей, которые расположены на расстоянии d1/Л друг от друга.
Излучатели питаются синфазными токами одинаковой амплитуды.
Необходимо вычислить:
а) ширину диаграммы направленности по половинной мощности 2ф0,5 и по направлениям нулевого излучения 2ф0 (в плоскости расположения излучателей)
б) направления, в которых отсутствует излучение в пределах 1-го квадранта ф0<=90 град.
в) направление максиму
700 руб.