Контрольная работа №2 по математическому анализу. 10-й вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a z=3x^2y^2+5y^2x A(1;1) a(2;1)
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).y^6=a^2(3y^2-x^2)(y^2+x^2)
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.z=0
z=4 y, x+y=4
Задача No 4: Даны векторное поле F=Xi+Yj+Zk, l — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащее плоскости (P); n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(x+3y+6z)i -x+y+2z-4=0
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).y^6=a^2(3y^2-x^2)(y^2+x^2)
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.z=0
z=4 y, x+y=4
Задача No 4: Даны векторное поле F=Xi+Yj+Zk, l — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащее плоскости (P); n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
F=(x+3y+6z)i -x+y+2z-4=0
Дополнительная информация
Зачет
2013 год.
2013 год.
Похожие материалы
Контрольная работа №2 по математическому анализу
Druzhba1356
: 22 сентября 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
40 руб.
Контрольная работа №2 по Математическому анализу.
Udacha2013
: 26 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с
230 руб.
Контрольная работа №2 по математическому анализу
aragorn24
: 10 февраля 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
50 руб.
Контрольная работа №2 по математическому анализу. Вариант №5
romaneniii
: 2 апреля 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
100 руб.
Контрольная работа № 2. Дополнительные главы математического анализа. 10-й вариант.
Доцент
: 24 февраля 2014
Задача № 1.
Вычертить область плоскости по данным условиям:
Задача № 2.
Найти все особые точки функции , определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
Решение:
Данная функция имеет две особые точки .
В данном случае: и
Точка z=0 является нулем первого порядка для функции , значит для исходной функции f(z) точка z=0.
Устранимая особая точка:
Так как , то .
Окончательно имеем: , .
Задача № 3.
При помощи вычетов вычислить данный интеграл по контур
100 руб.
Контрольная работа №2. Дополнительные главы математического анализа. 2-й семестр. 10-й вариант
NataFka
: 5 ноября 2013
Вариант 10.
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
Работа зачтена
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ. 2-й семестр. Вариант № 9
58197
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
60 руб.
Контрольная работа №2 (Математический анализ) В-6
banderas0876
: 6 мая 2015
Вариант 3.6
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
100 руб.
Другие работы
Рабинович Сборник задач по технической термодинамике Задача 154
Z24
: 30 ноября 2025
В закрытом сосуде находится газ при разрежении р1=2666 Па и температуре t1=10ºC. Показание барометра — 100 кПа. После охлаждения газа разрежение стало равным 20 кПа. Определить конечную температуру газа t2.
Ответ: T2=232,72K, t2=-40,4ºC.
150 руб.
Ответы к госэкзамену по дисциплине "Управление сетями связи."
Deva2009
: 29 ноября 2012
1.Назначение и общая характеристика системы управления.
2.ЭМВОС Показатели функционирования и роль системы управления. Основные показатели качества услуг.
100 руб.
Лабораторная работа № 17. Построение твердотельной модели. Вариант 2. СибГУ
Laguz
: 19 февраля 2024
Внимание. Сделано в компасе
1. Изучение формы детали, анализ графического состава изображения;
2. Определение необходимого количества твердотельных примитивов для создания модели.
3. Произведение настроек для трехмерного моделирования.
4. Выполнение трехмерной твердотельной модели.
5. Выполнение выреза 1⁄4 части детали для выявления её внутренней формы.
6. Окончательное оформление чертежа.
50 руб.
Проект ремонта промежуточного вала коробки передач ЗИЛ 130
Aronitue9
: 28 мая 2012
Введение
1. Технологическая часть
1.1. Анализ исходных данных для разработки технологического процесса.
1.2. Обоснование размеров производственной партии.
1.3. Выбор рационального способа восстановления детали.
1.4. Разработка схем технологического процесса восстановления дефектов.
1.4.1. Схема технологического процесса восстановления вала.
1.5. План технологических операций восстановления детали.
1.6. Разработка операций.
1.6.1. Постановка дополнительной детали.
1.6.2. Расчет режима механическо
41 руб.