Теория вероятностей, математическая статистика и случайные процессы. Экзамен. Билет № 4.

Цена:
88 руб.

Состав работы

material.view.file_icon
material.view.file_icon exz.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+В.
Решение: Пространство элементарных исходов для событий: А = {два шара белые};В ={шары одного цвета} = {два шара белые; два шара черные}...
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону: Найти cov(, ).
Решение: Ковариация случайных величин ξ, η определяется равенством:
cov(, ) = M [(ξ – M ξ)( η – M η)] = M(ξ× η) – Mξ× Mη
Найдем одномерные законы распределения:
Вычислим математическое ожидание составляющих ξ и η:...

Дополнительная информация

январь 2013 год, СибГУТИ, Разинкина Т.Э., оценка "отлично", решения задач 2 способами
Теория вероятностей математическая статистика и случайные процессы
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны? Решение: В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
User Кирилл81 : 26 января 2017
80 руб.
Теория вероятностей математическая статистика и случайные процессы
Теория вероятностей и математическая статистика, и случайные процессы
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые. Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
User style2off : 12 января 2016
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
Билет № 9 1. Тема: Независимость событий. Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события? 2. Тема: Мат. ожидание непрерывной с.в. Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
User tefant : 1 февраля 2013
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
Контрольная работа. Вариант 9, По дисциплине: Теория вероятностей, математическая статистика и случайные процессы Задача 1 Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
User tefant : 1 февраля 2013
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны? Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Задача 3. В типографии имеется 5 печатных машин. Для каждой
User 1231233 : 24 апреля 2010
23 руб.
Экзамен по дисциплине: « Теория вероятностей математическая статистика и случайные процессы»
Билет № 13 1. Тема: Схема Бернулли. Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что три телевизора не проработают гарантийный срок? 2. Тема: Дискретные с.в. Задача: Вероятность попадания в цель для некоторого стрелка равна 0,75. Какова вероятность того, что для первого попадания в цель ему потребуется три выстрела?
User Dusya : 5 октября 2011
150 руб.
Теория вероятностей математическая статистика и случайные процессы. Экзамен. Билет №8
No1 Тема: Теоремы сложения и умножения событий. Задача: Студент знает 10 вопросов из 30. В билете 3 вопроса. Найти вероятность того, что он знает хотя бы один вопрос. No2 Тема: Дисперсия непрерывной с.в. Задача: Случайная величина задана плотностью распределения. Найти её дисперсию. p(x)={█(0,если x≤0 @x/8,если 0<x≤4@0,x>4 )
User sibguter : 5 июня 2018
49 руб.
Экзамен Теория вероятностей математическая статистика и случайные процессы. Билет 19
1. Тема: Вероятность отклонения относительной частоты от постоянной вероятности. Задача: Вероятность выхода из строя прибора во время испытаний равна 0.1. Испытано 225 приборов. Найти вероятность того, что доля вышедших из строя приборов отличается от 0.1 не более, чем на 0,01. 2. Тема: Функция распределения дискретной с.в. Задача: По ряду распределения с.в. построить функцию распределения. 0 1 2 3 4 р 0.1 0.05 0.2 0.25 0.4
User gnv1979 : 15 июня 2016
45 руб.
Бизнес-план, технико-экономическое обоснование проекта
Понятие бизнес-плана, технико-экономического обоснования Общая характеристика содержания бизнес-плана Структура технико-экономического обоснования Отличие бизнес-плана от технико-экономического обоснования Разработка технико-экономического обоснования по производству нового вида продукции в ООО «Мечта» Общая характеристика предприятия Описание товара План маркетинга Производственный и финансовый план
User alfFRED : 24 марта 2013
10 руб.
Основы информационной безопасности в телекоммуникациях / Контрольная работа / 01 вариант
Место и роль информационной безопасности в различных сферах жизнедеятельности личности/общества/государства). Аналитический обзор
User Иван77717 : 9 апреля 2016
169 руб.
Высшая математика. Экзамен. Билет №5
1. Произведение матриц и его свойства. Обратная матрица и её вычисление. 2. Найти площадь параллелограмма, построенного на векторах и , где . 3. Действительная полуось гиперболы равна 5, эксцентриситет е = 1,4. Найти уравнение гиперболы, построить чертеж.
User DEIRDRE : 15 февраля 2016
100 руб.
Контрольная работа по дисциплине: Дискретная математика Вариант№2 3 семестр
1. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. 2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение. “Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
User tindrum : 1 ноября 2011
80 руб.
up Наверх