Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3 (2-й семестр)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1
Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
q = 0,2 k = 6
Задача 2
K = 5 L = 3 M = 4 N = 5 P = 2 R = 4
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K = 5 P = 0,4 R = 4
Задача 4
a = 0 b = 4
p(x) = c*(x-1)
α = 1,5 β = 3 p = 0,9
Непрерывная случайная величина задана ее плотностью распределения
p(x)=0, если x<=a
p(x)=приведено в таблице, если a<x<=b
p(x)=0, если x>b
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
Задача 5
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО σ. Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
σ = 50
Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
q = 0,2 k = 6
Задача 2
K = 5 L = 3 M = 4 N = 5 P = 2 R = 4
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K = 5 P = 0,4 R = 4
Задача 4
a = 0 b = 4
p(x) = c*(x-1)
α = 1,5 β = 3 p = 0,9
Непрерывная случайная величина задана ее плотностью распределения
p(x)=0, если x<=a
p(x)=приведено в таблице, если a<x<=b
p(x)=0, если x>b
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
Задача 5
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО σ. Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
σ = 50
Дополнительная информация
Оценка - отлично!
Год сдачи - 2014
Преподаватель: Разинкина Татьяна Эдуардовна
Год сдачи - 2014
Преподаватель: Разинкина Татьяна Эдуардовна
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3
Jack
: 14 февраля 2017
Вариант No3
Задача 1:
Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 5 печатных машин
350 руб.
Контрольная работа по дисциплине: «Теория вероятностей математическая статистика и случайные процессы» Вариант 3
vereney
: 26 января 2012
1,Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?
2,В одной урне белых шаров и черных шара, а в другой - белых и черных. Из первой урны случайным образом вынимают шара и опускают во вторую урну. После этого из второй урны также случайно вынимают шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
3,В типографии имеется печатных машин. Для каждой машины вероятность того, что о
50 руб.
Теория вероятностей. Математическая статистика и случайные процессы. Вариант №3
alexxxxxxxela
: 5 января 2014
Задача 1.
Вероятность появления поломок на каждой из k = 6 соединительных линий равна p = 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2.
В одной урне K=5 белых шаров и L=3 чёрных шаров, а в другой – M=4 белых и N=5 чёрных. Из первой урны случайным образом вынимают P =2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R=4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется K=5 печат
160 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Другие работы
Экзамен по истории «Иван Грозный и усиление российского самодержавия. Два периода царствования»
love14
: 5 июня 2013
«Иван Грозный и усиление российского самодержавия. Два периода царствования»
Введение
I. Иван IV (Грозный) – первый Российский царь
II. Cтановление государства и власти в первый период царствования Ивана Грозного
III. Опричнина становления российского самодержавия
Заключение
Список используемой литературы
Введение
Процесс становления власти на Руси начался с возникновением первого русского государства и продолжается до сих пор.
200 руб.
Расчетная часть- Расчет трехпоршневого бурового насоса НБТ М -375:Определение производительности насоса, Определение числа компенсаторов, Определение скорости хода поршня, Расчёты на прочность и долговечность основных элементов бурового насоса, Расчет на
leha.nakonechnyy.92@mail.ru
: 10 августа 2016
Расчетная часть- Расчет трехпоршневого бурового насоса НБТ М -375:Определение производительности насоса, Определение числа компенсаторов, Определение скорости хода поршня, Расчёты на прочность и долговечность основных элементов бурового насоса, Расчет на прочность втулок насоса, Расчет на прочность штока насоса, Описание конструкции устройства-Курсовая работа-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин
462 руб.
Методика расчетной оценки управляемости и устойчивости автомобиля на основе результатов полигонных испытаний
yura909090
: 22 февраля 2012
СОДЕРЖАНИЕ
УСЛОВНЫЕ ОБОЗНАЧЕНИЯ 4
ВВЕДЕНИЕ 7
1.ОБЗОР И АНАЛИЗ РАБОТ В ОБЛАСТИ УПРАВЛЯЕМОСТИ И УСТОЙЧИВОСТИ АВТОМОБИЛЯ 11
1.1.История развития исследований 11
1.2.Критерии и методы оценки управляемости и устойчивости автомобиля 25
1.3.Математическое моделирование при оценке управляемости и устойчивости автомобиля 38
1.4.Общие выводы, постановка цели и задач диссертации 47
2. ПОДГОТОВКА И ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА 49
2.1. Объект испытаний 49
2.2. Измерительное оборудование 50
2.3. Программа испыт
200 руб.
Инженерная графика. Задание №64. Вариант №19. Задачи №1,2,3,4 (Комплект)
Чертежи
: 2 мая 2021
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения.
Задание 64. Вариант 19
Данный комплект состоит из четырёх задач.
Задача 1. Выполнить простой разрез на главном виде детали, совместив половину вида и половину разреза. Не смотря на это, во многих ВУЗах данную задачу делают не по заданию оригинала, а в трёх видах и с изометрией детали с четвертью выреза, поэтому дополнительно было сделано и так.
Задача 2. Выполнить наклонный разрез А-А, заменив и
210 руб.