Вычислительная математика. Лабораторная работа №1-5. Вариант №6
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
лаба 1
Условия лабораторной работы:
Известно, что функция удовлетворяет условию при любом x.
Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1...29).
Для построения таблицы взять функцию N – последняя цифра пароля,
i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
лаба 2
Задание:
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Система уравнений
N – последняя цифра пароля
лаба3
Задание:
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 6:
лаба4
Условия лабораторной работы:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1,.. 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
лаба5
Условия лабораторной работы:
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,.. ),
при этом, ,
N – последняя цифра пароля.
Условия лабораторной работы:
Известно, что функция удовлетворяет условию при любом x.
Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1...29).
Для построения таблицы взять функцию N – последняя цифра пароля,
i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
лаба 2
Задание:
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Система уравнений
N – последняя цифра пароля
лаба3
Задание:
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант 6:
лаба4
Условия лабораторной работы:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1,.. 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля. Тогда, точное значение производной
лаба5
Условия лабораторной работы:
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,.. ),
при этом, ,
N – последняя цифра пароля.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 18.05.2014
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 18.05.2014
Рецензия:Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Лабораторная работа № 1 Вычислительная математика, Вариант №6
Notsohxc
: 19 апреля 2023
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью
180 руб.
Вычислительная математика. Лабораторная работа №1 (новая). Вариант №6.
nik200511
: 28 января 2022
Лабораторная работа № 1
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 зн
90 руб.
Вычислительная математика. Лабораторные работы №№1-3 (новые). Вариант №6.
nik200511
: 28 января 2022
Лабораторная работа No 1
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 з
279 руб.
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №6
Учеба "Под ключ"
: 9 сентября 2017
Лабораторная работа No1
Интерполяция
Задание к работе
Известно, что функция f(x) удовлетворяет условию |f``(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интер
800 руб.
Лабораторная работа №1 "Вычислительная математика"
Daniil2001
: 9 сентября 2024
Работа зачтена. В файле - документ word с текстом задания, текстом программы и результатом ее выполнения + файл .cpp и .exe самой программы. Программа написана на С++
30 руб.
Вычислительная математика. Лабораторная работа №1
nick0x01
: 22 марта 2014
Лабораторная работа №1. Интерполяция.
Известно, что функция f(x) удовлетворяет условию |f"(x)|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляе
69 руб.
«Вычислительная математика» Лабораторная работа № 1
1231233
: 19 сентября 2010
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках,
по таблице значений
23 руб.
Вычислительная математика. Лабораторные работы №1, 2, 3, 4, 5. Вариант: №6.
Cole82
: 5 июня 2015
Лабораторная работа №1. Интерполяция.
Лабораторная работа №2.Решение систем линейных уравнений.
Лабораторная работа №3.Решение нелинейных уравнений.
Лабораторная работа №4. Численное дифференцирование.
Лабораторная работа №5. Одномерная оптимизация.
21 руб.
Другие работы
Религиозный аспект международных отношений Ливана и Израиля
Slolka
: 13 сентября 2013
Динамика развития взаимоотношений Израиля и Ливана во многом определилась следующими факторами: внешняя политика Израиля в ближневосточном регионе и его позиция в арабо-израильском конфликте, а также внутриполитическая и религиозная обстановка в Ливане.
К началу 70-х годов усилившаяся политическая и социальная напряженность в Ливане стала следствием конфессионального принципа распределения власти и растущих социально-экономических противоречий. Это было обусловлено расколом общества на множеств
10 руб.
Финансовые риски предприятий
Qiwir
: 25 октября 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
ГЛАВА 1. АНАЛИЗ МЕТОДИЧЕСКИХ И ПРАКТИЧЕСКИХ 6
ПОДХОДОВ К УПРАВЛЕНИЮ ФИНАНСОВЫМИ РИСКАМИ 6
1.1 Сущность определения «финансовый риск» 6
1.2 Формирование классификации финансовых рисков 11
промышленного предприятия 11
1.3 Методические основы формирования системы управления 16
финансовыми рисками промышленного предприятия 16
ГЛАВА 2. АНАЛИЗ ФИНАНСОВЫХ РИСКОВ ОАО ГАЗПРОМ 21
2.1 Характеристика ОАО ГАЗПРОМ как объекта анализа 22
2.2 Диагностика и анализ факторов риска
10 руб.
Компьютерное моделирование. Контрольная работа. Вариант №14
Damovoy
: 28 июля 2021
Задание на контрольную работу
Заданы модели систем связи с:
• битовой скоростью передачи Rb, Мбит/с;
• модуляцией 4, 8 PSK, 16, 64, 256 QAM;
• фильтром с коэффициентом сглаживания ROF;
каналом с шумом AWGN с отношением Eb/N0, dB.
Исходные данные для варианта 14 смотри скрин
300 руб.
Контрольная работа по дисциплине: Маркетинг
antikeks
: 24 января 2013
Контрольная работа состоит из 3 задач
Вариант №1
Фирма осуществляет производство и продажу товара через сеть фирменных магазинов. Данные о цене товара и объеме проданных товаров в среднем за сутки, в одном из географических сегментов рынка приведены в таблице 1.1...
Для оперативного регулирования цены с учетом установленной эластичности спроса проанализировать затраты на производство и обращение товара на основании следующих исходных данных....
Используя результаты, полученные в задачах №1 и
250 руб.