Экзамен. Алгебра и геометрия. Билет №5
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
БИЛЕТ № 5
1. Матрицы. Виды матриц. Линейные операции над матрицами и их свойства.
2. Каноническое и параметрическое уравнение прямой на плоскости. Уравнение прямой, проходящей через две данные точки.
3. Доказать, что данные точки лежат в одной плоскости.
А (1;0;7), В (-1;-1;2), С (2;-2;2), D (0;1;9).
4. Действительная полуось гиперболы равна 5, эксцентриситет е = 1,4. Найти уравнение гиперболы, построить.
5. Вычислить , если .
1. Матрицы. Виды матриц. Линейные операции над матрицами и их свойства.
2. Каноническое и параметрическое уравнение прямой на плоскости. Уравнение прямой, проходящей через две данные точки.
3. Доказать, что данные точки лежат в одной плоскости.
А (1;0;7), В (-1;-1;2), С (2;-2;2), D (0;1;9).
4. Действительная полуось гиперболы равна 5, эксцентриситет е = 1,4. Найти уравнение гиперболы, построить.
5. Вычислить , если .
Дополнительная информация
Оценка:хорошо. 10.05.2014. Агульник В.И.
Похожие материалы
Алгебра и геометрия. Билет №5. Экзамен.
321
: 13 октября 2019
Задание экзаменационной работы на скриншоте!!!
Билет № 5
1. Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
Произведём сложение двух векторов и
4. Даны координаты вершин пирамиды
A(1;3;-2), B(-1;-3;0), C(0;2;0), D(-1;0;2).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
120 руб.
Экзамен по дисциплине: Алгебра и геометрия. Билет №5
Roma967
: 19 февраля 2016
Билет № 5
1. Произведение матриц и его свойства. Обратная матрица и её вычисление.
2. Найти площадь параллелограмма, построенного на векторах a=3p+2q и b=2p-q, где модуль(p)=4, модуль(q)=3, угол между векторами pq=(3pi/4).
3. Действительная полуось гиперболы равна 5, эксцентриситет е = 1,4. Найти уравнение гиперболы, построить чертеж.
300 руб.
Алгебра и геометрия Зачет Билет 5
petrova
: 21 декабря 2017
Билет No 5
1. Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
Обратная матрица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:...
100 руб.
Алгебра и геометрия. Экзамен. 1-й семестр. Билет № 5.
Ольга89
: 24 декабря 2015
1.Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
2. Решить матричное уравнение
3. Даны векторы
Найти
4. Даны координаты вершин пирамиды
A(1;3;-2), B(-1;-3;0), C(0;2;0), D(-1;0;2).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентрисите
80 руб.
Алгебра и геометрия. Экзамен
pepol
: 28 января 2013
БИЛЕТ № 13.
1. Теорема Кронекера - Капелли.
Система линейных алгебраических.....
2. Взаимное расположение двух прямых в пространстве.
Взаимное расположение двух прямых в пространстве характеризуются следующими
3. Решить матричное уравнение:
200 руб.
Экзамен. Алгебра и Геометрия.
ivi
: 31 января 2012
1. Скалярное произведение векторов и его свойства.
Скалярным произведением векторов и называется число, равное произведению их модулей на косинус угла между ними:
2. Классификация кривых второго порядка.
Кривая второго порядка – это геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида , в котором по крайней мере один из коэффициентов отличен от нуля.
3. Найти значение матричного многочлена , если , где .
4. Найти уравнение плоскости, п
200 руб.
Алгебра и геометрия. Экзамен.
andrshap
: 31 мая 2010
1. Декартова система координат. Направляющие косинусы вектора.
2. Гипербола и её свойства.
3. Доказать, что векторы
образуют базис и найти координаты вектора в этом базисе.
4. Найти обратную матрицу для матрицы
5. Найти координаты фокусов эллипса, если его малая полуось равна 5, а эксцентриситет равен 12/13.
5 руб.
Экзамен по алгебре и геометрии
shpion1987
: 27 января 2010
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
1 курс «Алгебра и геометрия». Экзамен
БИЛЕТ № 20
1. Векторное произведение векторов, его свойства.
2. Преобразования системы координат на плоскости: параллельный перенос и поворот.
3. Решить уравнение , где
А = , В = .
4. Найти проекцию точки А (5;2;-1) на плоскость
5. Найти площадь параллелограмма, построенного на векторах и , где .
50 руб.
Другие работы
Вариант №8, идз 1, идз 2. Инженерная графика. ТПУ
Laguz
: 28 марта 2016
Две контрольных по инженерной графике и начертательной геометрии.
Чертежи выполнены в компасе.
Подходит для специальностей 240100 химическая технология и 241000 энерго и ресурсосберегающие процессы.
ИДО
200 руб.
Лабораторная работа №3 По дисциплине Техническая термодинамика. Исследование теплоотдачи при движении воздуха в коридорном пучке труб. МИФИ
DiKey
: 15 марта 2023
Лабораторная работа №3 По дисциплине Техническая термодинамика. Исследование теплоотдачи при движении
воздуха в коридорном пучке труб. МИФИ
Цель работы: определить влияние скорости движения воздуха на тепло-отдачу в коридорном пучке труб.
Приборы: установка.
Установка состоит из аэродинамической трубы 1 сечением F, равным 180x80 мм2, в которой создается поток воздуха вентилятором 2. В аэродина-мической трубе установлена модель трубчатого теплообменника (пучок труб) 3, изготовленная из стальных
100 руб.
Привод мешалки
grom555
: 5 мая 2021
1 чертёж,формат А1,, Сборочный чертеж, выполнен в компасе 16-ой версии на формате А1. На листе изображёны 2 вида привода мешалки, даны основные размеры, основная надпись не заполнена, файл имеет расширение cdw. , упакован в RAR. чертёж выполнен в соответствии с ЕСКД. Может быть использован для Курсовых и Дипломных проектов по машиностроительным дисциплинам
160 руб.
Экзаменационная работа по дисциплине: Многоканальные системы передач. Билет № 12
Лесник
: 29 марта 2012
1. Определить длительность импульсов отсчетов одного канала в 4-канальной системе с ВРК. Защитный интервал между импульсами группового сигнала равен 5 мкс.
2. Величина отсчетов исходного сигнала в некоторый момент равна –385,7мВ. Шаг квантования равен 6Мв. Определить разрядность кода и кодовую группу, сотвествующему этому отсчету при использовании симметричного кода при равномерном квантовании.
3. На вход ЦСП подается сигнал, в спектре (0,7-4,1) кГц. Частота дискретизации выбрана равной Fд=7 кГ
50 руб.