Теория вероятностей и математическая статистика. 2-й семестр. Экзамен. Билет №3

Состав работы

material.view.file_icon
material.view.file_icon Экзамен теория вероятностей и мат.статистика билет 3.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли.

2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -2  -1 0 5 10
р 0,11 0,22 0,11 а 0,04

Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения

Найти величину с, интегральную функцию распределения, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
5. Двумерная дискретная случайная величина имеет таблицу распределения

Y
X 1 2 3 4
10 0,01 0,11 0,09 0,12
20 0 0,13 0,11 0,05
30 0,01 0,16 0,02 0,05
40 0 0,11 0,03 q

Найти величину q и коэффициент корреляции этой случайной величины.

Дополнительная информация

Работа сдана в феврале 2017, принята без замечаний. Преподаватель Агульник В.И.
Теория вероятностей и математическая статистика. Экзамен. 19-й билет. 3-й семестр
Билет No 19 1. Тема: Вероятность отклонения относительной частоты от постоянной вероятности. Задача: Вероятность выхода из строя прибора во время испытаний равна 0.1. Испытано 225 приборов. Найти вероятность того, что доля вышедших из строя приборов отличается от 0.1 не более, чем на 0,01. 2. Тема: Функция распределения дискретной с.в. Задача: По ряду распределения с.в. построить функцию распределения. 0 1 2 3 4 р 0.1 0.05 0.2 0.25 0.4
User nsksev : 9 января 2016
160 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
User artinjeti : 9 апреля 2018
150 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интеграль
User Nadyuha : 29 ноября 2017
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Билет №3. Теоретический вопрос. Схема Бернулли и Формула Бернулли. Практическое задание. Оцените распределение случайной величины по выборке: Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698 - выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению - оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода - проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
User DENREM : 19 марта 2014
120 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 3
1. Основные соединения и формулы комбинаторики. 2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком? 3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов. 4. Случайная величина Х имеет плотность распределения . Найти 5. Каков
User radist24 : 15 декабря 2011
70 руб.
Теория вероятностей и математическая статистика. 1-й семестр. Зачет. Билет №3
Теория вероятностей и математическая статистика 1 семестр. Зачет. Билет 3 1. Из трех орудий производится стрельба по отдаленной цели. Вероятность попадания из первого орудия -0,2, из второго – 0,3, из третьего – 0,4. Найти вероятность поражения цели.
User jaggy : 12 февраля 2016
350 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
Дистанционное обучение Дисциплина «Теория вероятностей и МС» Билет № 6 1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение 2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров? 3. Дискретная случайная величина имеет следующий ряд распределения Х 10 20 30 40 50 р a 2a 0,35 0,21 а Найти величину a, математическое ожидание и средн
User Мария60 : 11 февраля 2019
400 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
Теория вероятностей и математическая статистика. Экзамен. 3-й семестр. Билет №10
1. Дискретная случайная величина. Ряд и функция распределения. Числовые характеристики дискретной случайной величины. 2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным. 3.Плотность распределения случайной величины Х....Найти плотность распределения Y=X 3. 4. Игральная кость бросается три раза. Какова вероятность выпадения одной «шестерки»? 5.
User lnshulgaso : 3 мая 2014
200 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх