Лабораторная работа №4. Методы оптимальных решений. Вариант №7
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Microsoft Excel
Описание
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программирования.
-4 -1 2
1 3 2
5 -3 5
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программирования.
-4 -1 2
1 3 2
5 -3 5
Дополнительная информация
Оценка: зачет (замечаний нет)
Похожие материалы
Методы оптимальных решения. Вариант №7
Alekx900
: 12 января 2020
Вариант №7
Фабрика выпускает три вида тканей. Суточные ресурсы фабрики, их расход на единицу ткани и цена 1 метра выпускаемой продукции представлены в таблице.
Ресурсы Нормы затрат на производство 1 м ткани Суточный лимит
I II III
Оборудование 2 3 4 700
Сырье 1 4 5 800
Электроэнергия 3 4 2 600
Цена 8 7 6
1. Сформулируйте прямую оптимизационную задачу на максимум общей стоимости, рассчитайте оптимальную производственную программу, используя процедуру Поиск решения в Excel.
2. Проанализируйте
350 руб.
Лабораторная работа № 4 по дисциплине: Методы оптимальных решений
greenfield77
: 18 февраля 2016
Лабораторная работа № 4
По дисциплине: Методы оптимальных решений
Вариант 5
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой сумм
100 руб.
Лабораторная работа №4. Методы оптимальных решений. Вариант №2
5234
: 14 марта 2017
Лабораторная работа №4
Тема: «Решение игры как задачи линейного программирования»
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нуле
190 руб.
Лабораторная работа №4: Методы оптимальных решений. Вариант №3
Oscar85
: 28 декабря 2014
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного программировани
130 руб.
Лабораторная работа №4. Методы оптимальных решений. Вариант №3
Alexija
: 3 февраля 2014
Решение игры как задачи линейного программирования
Файл отчета по лабораторной работе должен содержать:
1. Условие задачи в соответствии с вариантом (Номер варианта выбирается по последней цифре пароля).
2. Нахождение верхней и нижней цены игры.
3. Запись игры как задачи линейного программирования.
4. Скриншот окна Excel с найденным решением задачи линейного программирования.
5. Решение игры.
Так же следует приложить файл Excel с решением задачи.
Задание:
Две отрасли могут осуществлять капит
150 руб.
Методы оптимальных решений. Лабораторная работа №4. Вариант №5
nnn25
: 10 октября 2013
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммой.
Решить матричную игру в MS Excel, записав ее как задачу линейного прогр
120 руб.
Лабораторная работа №4. Методы оптимальных решений. Вариант №9
Alexija
: 3 июля 2013
Лабораторная работа №4
Решение игры как задачи линейного программирования
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммо
100 руб.
Лабораторная работа №4. Методы оптимальных решений. Вариант №1
Alexija
: 24 июня 2013
Лабораторная работа №4
Решение игры как задачи линейного программирования
Задание:
Две отрасли могут осуществлять капитальные вложения в 3 объекта. Стратегии отраслей: i-я стратегия состоит в финансировании i-го объекта (i = 1, 2, 3). Учитывая особенности вкладов и местные условия, прибыли первой отрасли выражаются матрицей 3х3.
Величина прибыли первой отрасли считается такой же величиной убытка для второй отрасли - представленная игра может рассматриваться как игра двух игроков с нулевой суммо
100 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.