РГЗ по «Теория вероятностей и математическая статистика» .(6 вариант)

Состав работы

material.view.file_icon 9E0B2631-C355-412F-94EF-4F7D1595B4D5.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11

Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более Kрешек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55

Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.

Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036;
i2=-0,809;
i3=0,315;
i4=-0,265;
i5=0,471;
i6=-0,386;
i7=0,576;
i8=-0,556;
i9=0,508;
i10=0,477;
K=3
Теория вероятностей и математическая статистика. Вариант №6
Контрольная работа по курсу Теория вероятностей Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля как указано в таблице. Для проверки преподавателю высылаются сразу все задачи, выполненные в редакторе Word. Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля(6) как указано в таблице 1 Задача 1 Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединени
User najdac : 17 ноября 2021
75 руб.
Теория вероятностей и математическая статистика. Вариант №6
Теория вероятности и математическая статистика. Вариант №6
Задание 1. Комбинаторика Сколько 7-ми буквенных слов можно составить из букв слова ШЕРШЕНЬ? Для передачи сообщения используются сигналы типов 0 и 1. Сигналы 0 составляют 60%, а сигналы 1 остальные 40%. Вероятность искажения сигнала 0 равна 0.0001, а вероятность искажения сигнала 1 равна 0.0002. Найти вероятность искажения наугад взятого сигнала.
User Vladimir54 : 22 января 2020
300 руб.
Теория вероятностей и математическая статистика. Вариант №6
Билет № 6 1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение 2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров? 3. Дискретная случайная величина имеет следующий ряд распределения Х 10 20 30 40 50 р a 2a 0,35 0,21 а Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непр
User 5234 : 7 ноября 2016
95 руб.
Теория вероятностей и математическая статистика, вариант 6
Часть I: Теория вероятностей и математическая статистика Задача 1. В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями): а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной? б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной? в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
User СибирскийГУТИ : 1 октября 2013
200 руб.
Теория вероятностей и математическая статистика
Задание 1. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно: Задание 2. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
User Dirol340 : 11 декабря 2022
250 руб.
Теория вероятностей и математическая статистика
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования. 2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
User viktoriya199000 : 16 мая 2022
50 руб.
Теория вероятностей и математическая статистика
Шнековый Пресс
В работе рассматривается шнековый пресс ВПО 20А Целью данной работы является анализ конструкции пресса и принципа ее действия, а также проведение инженерных расчетов: кинематического расчета привода, технологического и прочностного расчета пресса, а также монтаж и эксплуатация пресса. В качестве исходных данных использовалась схема пресса с нанесенными габаритными размерами и обозначениями. Для кинематического расчета привода использовались данные о мощности двигателя. В работе также проведен ан
User Mr.Smitth : 14 мая 2009
30 руб.
Бизнес–план психологического кабинета
СОДЕРЖАНИЕ Введение Резюме 1. Общая характеристика предприятия 2. Описание услуги 3. Анализ отрасли и основных конкурентов 4. Производственная деятельность 5. План маркетинговой деятельности 6. Финансовый план Заключение Список использованной литературы Введение В современной быстроменяющейся экономической ситуации невозможно добиться положительных результатов, не планируя своих действий и не прогнозируя последствий. Планирование – это одна из важнейших предпосылок оптимального упра
User Qiwir : 8 ноября 2013
10 руб.
Основание в сборе - Задание 1
ИНЖЕНЕРНАЯ ГРАФИКА. ПРАКТИКУМ ПО ЧЕРТЕЖАМ СБОРОЧНЫХ ЕДИНИЦ. Под редакцией П.В. Зеленого. Задание 1 - Основание в сборе. Сборочная единица "Основание в сборе" содержит три детали. Тарелка 2 прикреплена к фиксатору 1 винтом 5 (М12х30 ГОСТ 17473-80) и Гайкой 6 (М12 ГОСТ 5915-70). Основание 3 соединено с фиксатором двумя винтами 4 (М8х16 ГОСТ 1491-80). Состав работы: -3D модели всех деталей -3D сборка -3D сборка с разносом компонентов -Сборочный чертеж -Спецификация -Чертежи всех деталей (деталиро
User .Инженер. : 21 октября 2022
250 руб.
Основание в сборе - Задание 1 promo
Стаціонарний консольний обертовий електричний кран
Вибір вантажного гака Розрахунок елементів підвіски Визначаємо ККД поліспасту Вибір редуктора Перевірка двигуна за часом пуску Вибір муфти Визначення гальмівного моменту та вибір гальм РОЗРАХУНОК МЕХАНІЗМ ПЕРЕСУВАННЯ ВІЗКА Вибір схеми механізму пересування візка Визначення максимального тиску на ходове колесо Вибір ходових коліс Опір пересування візка Визначення потужності двигуна, його вибір Вибір редуктора Вибір муфт Вибір гальм Перевірка двигуна за тривалістю розгону РОЗРАХУНОК МЕХАНIЗМУ ПОВ
User GnobYTEL : 28 ноября 2016
390 руб.
Стаціонарний консольний обертовий електричний кран
up Наверх