РГЗ по «Теория вероятностей и математическая статистика» .(6 вариант)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11
Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более Kрешек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55
Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.
Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036;
i2=-0,809;
i3=0,315;
i4=-0,265;
i5=0,471;
i6=-0,386;
i7=0,576;
i8=-0,556;
i9=0,508;
i10=0,477;
K=3
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11
Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более Kрешек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55
Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.
Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036;
i2=-0,809;
i3=0,315;
i4=-0,265;
i5=0,471;
i6=-0,386;
i7=0,576;
i8=-0,556;
i9=0,508;
i10=0,477;
K=3
Похожие материалы
Теория вероятностей и математическая статистика. Вариант №6
najdac
: 17 ноября 2021
Контрольная работа по курсу Теория вероятностей
Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля как указано в таблице. Для проверки преподавателю высылаются сразу все задачи, выполненные в редакторе Word.
Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля(6) как указано в таблице 1
Задача 1
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединени
75 руб.
Теория вероятности и математическая статистика. Вариант №6
Vladimir54
: 22 января 2020
Задание 1. Комбинаторика
Сколько 7-ми буквенных слов можно составить из букв слова ШЕРШЕНЬ?
Для передачи сообщения используются сигналы типов 0 и 1. Сигналы 0 составляют 60%, а сигналы 1 остальные 40%. Вероятность искажения сигнала 0 равна 0.0001, а вероятность искажения сигнала 1 равна 0.0002. Найти вероятность искажения наугад взятого сигнала.
300 руб.
Теория вероятностей и математическая статистика. Вариант №6
5234
: 7 ноября 2016
Билет № 6
1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение
2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров?
3. Дискретная случайная величина имеет следующий ряд распределения
Х 10 20 30 40 50
р a 2a 0,35 0,21 а
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непр
95 руб.
Теория вероятностей и математическая статистика, вариант 6
СибирскийГУТИ
: 1 октября 2013
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
200 руб.
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования.
2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге.
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге
50 руб.
Другие работы
Шнековый Пресс
Mr.Smitth
: 14 мая 2009
В работе рассматривается шнековый пресс ВПО 20А
Целью данной работы является анализ конструкции пресса и принципа ее действия, а также проведение инженерных расчетов: кинематического расчета привода, технологического и прочностного расчета пресса, а также монтаж и эксплуатация пресса.
В качестве исходных данных использовалась схема пресса с нанесенными габаритными размерами и обозначениями. Для кинематического расчета привода использовались данные о мощности двигателя.
В работе также проведен ан
30 руб.
Бизнес–план психологического кабинета
Qiwir
: 8 ноября 2013
СОДЕРЖАНИЕ
Введение
Резюме
1. Общая характеристика предприятия
2. Описание услуги
3. Анализ отрасли и основных конкурентов
4. Производственная деятельность
5. План маркетинговой деятельности
6. Финансовый план
Заключение
Список использованной литературы
Введение
В современной быстроменяющейся экономической ситуации невозможно добиться положительных результатов, не планируя своих действий и не прогнозируя последствий.
Планирование – это одна из важнейших предпосылок оптимального упра
10 руб.
Основание в сборе - Задание 1
.Инженер.
: 21 октября 2022
ИНЖЕНЕРНАЯ ГРАФИКА. ПРАКТИКУМ ПО ЧЕРТЕЖАМ СБОРОЧНЫХ ЕДИНИЦ. Под редакцией П.В. Зеленого. Задание 1 - Основание в сборе.
Сборочная единица "Основание в сборе" содержит три детали. Тарелка 2 прикреплена к фиксатору 1 винтом 5 (М12х30 ГОСТ 17473-80) и Гайкой 6 (М12 ГОСТ 5915-70). Основание 3 соединено с фиксатором двумя винтами 4 (М8х16 ГОСТ 1491-80).
Состав работы:
-3D модели всех деталей
-3D сборка
-3D сборка с разносом компонентов
-Сборочный чертеж
-Спецификация
-Чертежи всех деталей (деталиро
250 руб.
Стаціонарний консольний обертовий електричний кран
GnobYTEL
: 28 ноября 2016
Вибір вантажного гака
Розрахунок елементів підвіски
Визначаємо ККД поліспасту
Вибір редуктора
Перевірка двигуна за часом пуску
Вибір муфти
Визначення гальмівного моменту та вибір гальм
РОЗРАХУНОК МЕХАНІЗМ ПЕРЕСУВАННЯ ВІЗКА
Вибір схеми механізму пересування візка
Визначення максимального тиску на ходове колесо
Вибір ходових коліс
Опір пересування візка
Визначення потужності двигуна, його вибір
Вибір редуктора
Вибір муфт
Вибір гальм
Перевірка двигуна за тривалістю розгону
РОЗРАХУНОК МЕХАНIЗМУ ПОВ
390 руб.